Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Singular integrals on symmetric spaces, II


Author: Alexandru D. Ionescu
Journal: Trans. Amer. Math. Soc. 355 (2003), 3359-3378
MSC (2000): Primary 22E46, 43A85
DOI: https://doi.org/10.1090/S0002-9947-03-03312-9
Published electronically: April 25, 2003
MathSciNet review: 1974692
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend some of our earlier results on boundedness of singular integrals on symmetric spaces of real rank one to arbitrary noncompact symmetric spaces. Our main theorem is a transference principle for operators defined by $\mathbb{K}$-bi-invariant kernels with certain large scale cancellation properties. As an application we prove $L^p$ boundedness of operators defined by Fourier multipliers that satisfy singular differential inequalities of the Hörmander-Michlin type.


References [Enhancements On Off] (What's this?)

  • 1. J.-Ph. Anker, $L^p$ Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597-628. MR 92e:43006
  • 2. J.-Ph. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal. 9 (1999), 1035-1091. MR 2001b:58038
  • 3. J.-Ph. Anker and L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces II, Preprint (1999).
  • 4. J.-Ph. Anker and N. Lohoué, Multiplicateurs sur certains espaces symétriques, Amer. J. Math. 108 (1986), 1303-1354. MR 88c:43008
  • 5. J.-L. Clerc and E. M. Stein, $L^p$-multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 3911-3912. MR 51:3803
  • 6. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conference Series in Mathematics, No. 31, Amer. Math. Soc., Providence, RI (1976). MR 58:2019
  • 7. M. Cowling, The Kunze-Stein phenomenon, Ann. Math. 107 (1978), 209-234. MR 58:22398
  • 8. M. Cowling, S. Giulini and S. Meda, $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109-150. MR 95b:22031
  • 9. S. Giulini, G. Mauceri and S. Meda, $L^p$ multipliers on noncompact symmetric spaces, J. reine angew. Math. 482 (1997), 151-175. MR 98g:43006
  • 10. Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241-310. MR 20:925
  • 11. S. Helgason, Groups and Geometric Analysis; Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York (1984). MR 86c:22017
  • 12. S. Helgason, Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., Providence, RI (1994). MR 96h:43009
  • 13. C. Herz, Sur le phénomène de Kunze-Stein, C. R. Acad. Sci. Paris, Série A 271 (1970), 491-493. MR 43:6741
  • 14. A. D. Ionescu, Singular integrals on symmetric spaces of real rank one, Duke Math. J. 114 (2002), 101-122. MR 2003c:43008
  • 15. R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $2\times 2$ unimodular group, Amer. J. Math. 82 (1960), 1-62. MR 29:1287
  • 16. L.-A. Lindahl, Fatou's theorem for symmetric spaces, Ark. Mat. 10 (1972), 33-47. MR 52:3892
  • 17. N. Lohoué and T. Rychener, Some function spaces on symmetric spaces related to convolution operators, J. Funct. Anal. 55 (1984), 200-219. MR 85d:22024
  • 18. R. J. Stanton and P. A. Tomas, Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251-271. MR 58:23365
  • 19. E. M. Stein, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press (1971). MR 46:4102
  • 20. E. M. Stein, Harmonic Analysis, Princeton Univ. Press (1993). MR 95c:42002
  • 21. J. O. Strömberg, Weak type $L^1$ estimates for maximal functions on noncompact symmetric spaces, Ann. Math. 114 (1981), 115-126. MR 82k:43010
  • 22. M. E. Taylor, $L^p$ estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793. MR 91d:58253

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E46, 43A85

Retrieve articles in all journals with MSC (2000): 22E46, 43A85


Additional Information

Alexandru D. Ionescu
Affiliation: Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Address at time of publication: University of Wisconsin – Madison, Madison, Wisconsin 53706
Email: aionescu@math.mit.edu, ionescu@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03312-9
Received by editor(s): September 12, 2001
Published electronically: April 25, 2003
Additional Notes: The author was supported in part by the National Science Foundation under NSF Grant No. 0100021
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society