Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete homogeneous varieties: Structure and classification


Author: Carlos Sancho de Salas
Journal: Trans. Amer. Math. Soc. 355 (2003), 3651-3667
MSC (2000): Primary 14M17, 14M15, 14L30, 32M10
DOI: https://doi.org/10.1090/S0002-9947-03-03280-X
Published electronically: March 17, 2003
MathSciNet review: 1990167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Homogeneous varieties are those whose group of automorphisms acts transitively on them. In this paper we prove that any complete homogeneous variety splits in a unique way as a product of an abelian variety and a parabolic variety. This is obtained by proving a rigidity theorem for the parabolic subgroups of a linear group. Finally, using the results of Wenzel on the classification of parabolic subgroups of a linear group and the results of Demazure on the automorphisms of a flag variety, we obtain the classification of the parabolic varieties (in characteristic different from $2,3$). This, together with the moduli of abelian varieties, concludes the classification of the complete homogeneous varieties.


References [Enhancements On Off] (What's this?)

  • 1. Borel, A. Symmetric Compact Complex Spaces. Arch. Math. (Basel) 33 (1979/80), no. 1, 49-56. MR 80k:32033
  • 2. Borel, A. and Remmert, R. Über kompakte homogene Kählersche Mannigfaltigkeiten. Math. Ann. 145 (1961/1962), no. 1, 429-439. MR 26:3088
  • 3. Chevalley, C. Séminaire sur la Classification des Groupes de Lie Algébriques. Paris: Ecole Norm. Sup. 1956-1958. MR 21:5696
  • 4. Demazure, M. Automorphismes et Déformations des Variétés de Borel. Invent. Math. 39, 179-186 (1977). MR 55:8054
  • 5. Grothendieck, A. Technique de descente et théorèmes d'existence en géométrie algébrique. V: Les schémas de Picard: Théorèmes d'existence, Séminaire Bourbaki, 14ième année, 1961/62, fasc. 3, Exposé 232, Secrétariat Math., Paris, 1962, and reprints. MR 26:3561; MR 33:5420i; MR 99f:00039
  • 6. Humphreys, J. E. Linear Algebraic Groups. Graduate Texts in Mathematics 21, Springer-Verlag, New York (1975). MR 53:633
  • 7. Matsumura, H. and Oort, F. Representability of Group Functors, and Automorphisms of Algebraic Schemes. Invent. Math. 4, 1-25 (1967). MR 36:181
  • 8. Mumford, D. Abelian Varieties. Tata Studies in Math., Oxford Univ. Press (1970). MR 44:219
  • 9. Mumford, D. On the Equations Defining Abelian Varieties, I, II, III. Invent. Math. 1 (1966), 287-354; 3 (1967), 76-135, 215-244. MR 34:4269; MR 36:2621; MR 36:2622
  • 10. Mumford, D. and Fogarty, J. Geometric Invariant Theory. Springer-Verlag (1982). MR 86a:14006
  • 11. Rosenlicht, M. Some Basic Theorems on Algebraic Groups. Amer. J. of Math. 78, 427-443, (1956). MR 18:514a
  • 12. Wenzel, Ch. Classification of all Parabolic Subgroup-Schemes of a Reductive Linear Algebraic Group over an Algebraically Closed Field. Trans. Amer. Math. Soc. 337, 211-218 (1993). MR 93g:20090

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14M17, 14M15, 14L30, 32M10

Retrieve articles in all journals with MSC (2000): 14M17, 14M15, 14L30, 32M10


Additional Information

Carlos Sancho de Salas
Affiliation: Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 3-4, C.P. 37008, España
Email: sancho@gugu.usal.es

DOI: https://doi.org/10.1090/S0002-9947-03-03280-X
Received by editor(s): February 15, 2002
Received by editor(s) in revised form: October 11, 2002
Published electronically: March 17, 2003
Additional Notes: This research was partially supported by the Spanish DGI through research project BFM2000-1315 and by the “Junta de Castilla y León” through research project SA009/01
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society