IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spin Borromean surgeries


Author: Gwénaël Massuyeau
Journal: Trans. Amer. Math. Soc. 355 (2003), 3991-4017
MSC (2000): Primary 57M27; Secondary 57R15
DOI: https://doi.org/10.1090/S0002-9947-03-03071-X
Published electronically: June 24, 2003
MathSciNet review: 1990572
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1986, Matveev defined the notion of Borromean surgery for closed oriented $3$-manifolds and showed that the equivalence relation generated by this move is characterized by the pair (first Betti number, linking form up to isomorphism).

We explain how this extends for $3$-manifolds with spin structure if we replace the linking form by the quadratic form defined by the spin structure. We then show that the equivalence relation among closed spin $3$-manifolds generated by spin Borromean surgeries is characterized by the triple (first Betti number, linking form up to isomorphism, Rochlin invariant modulo  $8$).


References [Enhancements On Off] (What's this?)

  • [Bl] C. Blanchet, Invariants on three-manifolds with spin-structure, Comment. Math. Helvetici 67 (1992), 406-427. MR 94f:57003
  • [CM] T.D. Cochran and P. Melvin, Finite type invariants of $3$-manifolds, Invent. Math. 140 (2000), 45-100. MR 2002a:57015
  • [De1] F. Deloup, Linking forms, reciprocity for Gauss sums and invariants of $3$-manifolds, Trans. Amer. Math. Soc. 351 $\textrm{n}^{\circ}$5 (1999), 1895-1918. MR 99h:57035
  • [De2] -, Reciprocity for Gauss sums and invariants of $3$-manifolds, Thèse de Doctorat (1997), Université de Strasbourg.
  • [Du] A.H. Durfee, Bilinear and quadratic forms on torsion modules, Adv. in Math. 25 (1977), 133-164. MR 58:506
  • [GGP] S. Garoufalidis, M. Goussarov, and M. Polyak, Calculus of clovers and FTI of $3$-manifolds, Geometry and Topology 5 (2001), 75-108. MR 2002f:57025
  • [Gi] C. Gille, Sur certains invariants récents en topologie de dimension 3, Thèse de Doctorat (1998), Université de Nantes.
  • [Go] M. Goussarov, Finite type invariants and n-equivalence of $3$-manifolds, Compt. Rend. Acad. Sci. Paris 329 Série I (1999), 517-522. MR 2000g:57019
  • [Ha] K. Habiro, Claspers and finite type invariants of links, Geometry and Topology 4 (2000), 1-83. MR 2001g:57020
  • [Jo] D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2) 22 (1980), 365-373. MR 81m:57015
  • [Ka] S.J. Kaplan, Constructing framed 4-manifolds with given almost framed boundaries, Trans. Amer. Math. Soc. 254 (1979), 237-263. MR 82h:57015
  • [KK] A. Kawauchi and S. Kojima, Algebraic Classification of Linking Pairings, Math. Ann. 253 (1980), 29-42. MR 82b:57007
  • [Ki] R.C. Kirby, The topology of $4$-manifolds, Lecture Notes in Math. 1374, Springer-Verlag (1991). MR 90j:57012
  • [LL] J. Lannes and F. Latour, Signature modulo $8$ des variétés de dimension $4k$ dont le bord est stablement parallélisé, Compt. Rend. Acad. Sci. Paris 279 Série A (1974), 705-707. MR 55:13449
  • [Li] W.B.R. Lickorish, A representation of orientable combinatorial $3$-manifolds, Ann. of Math. 76 (1962), 531-540. MR 27:1929
  • [Ma] S.V. Matveev, Generalized surgery of three-dimensional manifolds and representations of homology spheres, Mat. Zametki 42 $\textrm{n}^{\circ}$2 (1987), 268-278 (English translation in: Math. Notices Acad. Sci. USSR, 42:2). MR 89g:57015
  • [MH] J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse der Math. 73, Berlin, Heidelberg, New York (1973). MR 58:22129
  • [MS] J. Morgan and D. Sullivan, The transversality characteristic class and linking cycles in surgery theory, Ann. of Math. II Ser. 99 (1974), 463-544. MR 50:3240
  • [MN] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89. MR 90f:57007
  • [Tu] V.G. Turaev, Cohomology rings, linking forms and invariants of spin structure of three-dimensional manifolds, Math. USSR Sbornik 48 $\textrm{n}^{\circ}$1(1984), 65-79. MR 84g:57009
  • [VdB] F. Van der Blij, An invariant of quadratic forms modulo 8, Indag. Math. 21 (1959), 291-293. MR 21:7183
  • [Wa1] C.T.C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1964), 281-298. MR 28:133
  • [Wa2] -, Quadratic forms on finite groups II, Bull. London Math. Soc. 4 (1972), 156-160. MR 48:435
  • [Wa3] -, Non-additivity of the signature, Invent. Math. 7 (1969), 269-274. MR 39:7615

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M27, 57R15

Retrieve articles in all journals with MSC (2000): 57M27, 57R15


Additional Information

Gwénaël Massuyeau
Affiliation: Laboratoire Jean Leray, UMR 6629 CNRS/Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
Email: massuyea@math.univ-nantes.fr

DOI: https://doi.org/10.1090/S0002-9947-03-03071-X
Keywords: 3-manifolds, finite type invariants, spin structures, $Y$-graphs
Received by editor(s): April 16, 2001
Received by editor(s) in revised form: April 2, 2002
Published electronically: June 24, 2003
Additional Notes: Commutative diagrams were drawn with Paul Taylor’s package
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society