Fractafolds based on the Sierpinski gasket and their spectra

Author:
Robert S. Strichartz

Journal:
Trans. Amer. Math. Soc. **355** (2003), 4019-4043

MSC (2000):
Primary 28A80

Published electronically:
June 18, 2003

MathSciNet review:
1990573

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notion of ``fractafold'', which is to a fractal what a manifold is to a Euclidean half-space. We specialize to the case when the fractal is the Sierpinski gasket SG. We show that each such compact fractafold can be given by a cellular construction based on a finite cell graph , which is -regular in the case that the fractafold has no boundary. We show explicitly how to obtain the spectrum of the fractafold from the spectrum of the graph, using the spectral decimation method of Fukushima and Shima. This enables us to obtain isospectral pairs of nonhomeomorphic fractafolds. We also show that although SG is topologically rigid, there are fractafolds based on SG that are not topologically rigid.

**[BR]**Christoph Bandt and Teklehaimanot Retta,*Topological spaces admitting a unique fractal structure*, Fund. Math.**141**(1992), no. 3, 257–268. MR**1199238****[B]**Martin T. Barlow,*Diffusions on fractals*, Lectures on probability theory and statistics (Saint-Flour, 1995) Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121. MR**1668115**, 10.1007/BFb0092537**[BK]**Martin T. Barlow and Jun Kigami,*Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets*, J. London Math. Soc. (2)**56**(1997), no. 2, 320–332. MR**1489140**, 10.1112/S0024610797005358**[BP]**Martin T. Barlow and Edwin A. Perkins,*Brownian motion on the Sierpiński gasket*, Probab. Theory Related Fields**79**(1988), no. 4, 543–623. MR**966175**, 10.1007/BF00318785**[Br1]**Robert Brooks,*The Sunada method*, Tel Aviv Topology Conference: Rothenberg Festschrift (1998), Contemp. Math., vol. 231, Amer. Math. Soc., Providence, RI, 1999, pp. 25–35. MR**1705572**, 10.1090/conm/231/03350**[Br2]**Robert Brooks,*Non-Sunada graphs*, Ann. Inst. Fourier (Grenoble)**49**(1999), no. 2, 707–725 (English, with English and French summaries). MR**1697378****[Br3]**R. Brooks, personal communication.**[Bu]**Peter Buser,*Cayley graphs and planar isospectral domains*, Geometry and analysis on manifolds (Katata/Kyoto, 1987) Lecture Notes in Math., vol. 1339, Springer, Berlin, 1988, pp. 64–77. MR**961473**, 10.1007/BFb0083047**[DSV]**Kyallee Dalrymple, Robert S. Strichartz, and Jade P. Vinson,*Fractal differential equations on the Sierpinski gasket*, J. Fourier Anal. Appl.**5**(1999), no. 2-3, 203–284. MR**1683211**, 10.1007/BF01261610**[DM]**W. Dębski and J. Mioduszewski,*Simple plane images of the Sierpiński triangular curve are nowhere dense*, Colloq. Math.**59**(1990), no. 1, 125–140. MR**1078298****[F]**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****[F-TN]**Alessandro Figà-Talamanca and Claudio Nebbia,*Harmonic analysis and representation theory for groups acting on homogeneous trees*, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR**1152801****[FS]**M. Fukushima and T. Shima,*On a spectral analysis for the Sierpiński gasket*, Potential Anal.**1**(1992), no. 1, 1–35. MR**1245223**, 10.1007/BF00249784**[GRS]**Michael Gibbons, Arjun Raj, and Robert S. Strichartz,*The finite element method on the Sierpinski gasket*, Constr. Approx.**17**(2001), no. 4, 561–588. MR**1845268**, 10.1007/s00365-001-0010-z**[Ki1]**Jun Kigami,*Analysis on fractals*, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR**1840042****[Ki2]**J. Kigami,*Harmonic analysis for resistance forms*, J. Functional Anal., to appear.**[MT]**L. Malozemov and A. Teplyaev,*Self-similarity, operators and dynamics*, preprint.**[MST]**R. Meyers, R. Strichartz and A. Teplyaev,*Dirichlet forms on the Sierpinski gasket*, Pacific J. Math. (to appear).**[Sa]**C. Sabot,*Existence and uniqueness of diffusions on finitely ramified self-similar fractals*, Ann. Sci. École Norm. Sup. (4)**30**(1997), no. 5, 605–673 (English, with English and French summaries). MR**1474807**, 10.1016/S0012-9593(97)89934-X**[Sh1]**Tadashi Shima,*On eigenvalue problems for the random walks on the Sierpiński pre-gaskets*, Japan J. Indust. Appl. Math.**8**(1991), no. 1, 127–141. MR**1093832**, 10.1007/BF03167188**[Sh2]**Tadashi Shima,*On eigenvalue problems for Laplacians on p.c.f. self-similar sets*, Japan J. Indust. Appl. Math.**13**(1996), no. 1, 1–23. MR**1377456**, 10.1007/BF03167295**[Shi]**Tomoyuki Shirai,*The spectrum of infinite regular line graphs*, Trans. Amer. Math. Soc.**352**(2000), no. 1, 115–132. MR**1665338**, 10.1090/S0002-9947-99-02497-6**[S1]**Robert S. Strichartz,*Fractals in the large*, Canad. J. Math.**50**(1998), no. 3, 638–657. MR**1629847**, 10.4153/CJM-1998-036-5**[S2]**Robert S. Strichartz,*Analysis on fractals*, Notices Amer. Math. Soc.**46**(1999), no. 10, 1199–1208. MR**1715511****[T]**Alexander Teplyaev,*Spectral analysis on infinite Sierpiński gaskets*, J. Funct. Anal.**159**(1998), no. 2, 537–567. MR**1658094**, 10.1006/jfan.1998.3297

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
28A80

Retrieve articles in all journals with MSC (2000): 28A80

Additional Information

**Robert S. Strichartz**

Affiliation:
Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853

Email:
str@math.cornell.edu

DOI:
http://dx.doi.org/10.1090/S0002-9947-03-03171-4

Received by editor(s):
May 30, 2002

Published electronically:
June 18, 2003

Additional Notes:
This research was supported in part by the National Science Foundation, grant DMS-0140194

Article copyright:
© Copyright 2003
American Mathematical Society