Inverse functions of polynomials and orthogonal polynomials as operator monotone functions
Author:
Mitsuru Uchiyama
Journal:
Trans. Amer. Math. Soc. 355 (2003), 41114123
MSC (2000):
Primary 47A63, 15A48; Secondary 33C45, 30B40
Published electronically:
June 10, 2003
MathSciNet review:
1990577
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the operator monotonicity of the inverse of every polynomial with a positive leading coefficient. Let be a sequence of orthonormal polynomials and the restriction of to , where is the maximum zero of . Then and the composite are operator monotone on . Furthermore, for every polynomial with a positive leading coefficient there is a real number so that the inverse function of defined on is semioperator monotone, that is, for matrices , implies
 1.
Rajendra
Bhatia, Matrix analysis, Graduate Texts in Mathematics,
vol. 169, SpringerVerlag, New York, 1997. MR 1477662
(98i:15003)
 2.
William
F. Donoghue Jr., Monotone matrix functions and analytic
continuation, SpringerVerlag, New YorkHeidelberg, 1974. Die
Grundlehren der mathematischen Wissenschaften, Band 207. MR 0486556
(58 #6279)
 3.
Peter
Borwein and Tamás
Erdélyi, Polynomials and polynomial inequalities,
Graduate Texts in Mathematics, vol. 161, SpringerVerlag, New York,
1995. MR
1367960 (97e:41001)
 4.
Frank
Hansen and Gert
Kjaergȧrd Pedersen, Jensen’s inequality for operators
and Löwner’s theorem, Math. Ann. 258
(1981/82), no. 3, 229–241. MR 649196
(83g:47020), http://dx.doi.org/10.1007/BF01450679
 5.
Roger
A. Horn and Charles
R. Johnson, Topics in matrix analysis, Cambridge University
Press, Cambridge, 1991. MR 1091716
(92e:15003)
 6.
A.
Korányi, On a theorem of Löwner and its connections
with resolvents of selfadjoint transformations, Acta Sci. Math. Szeged
17 (1956), 63–70. MR 0082656
(18,588c)
 7.
K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177216.
 8.
Marvin
Rosenblum and James
Rovnyak, Hardy classes and operator theory, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press, New
York, 1985. Oxford Science Publications. MR 822228
(87e:47001)
 9.
Mitsuru
Uchiyama, Operator monotone functions which are defined implicitly
and operator inequalities, J. Funct. Anal. 175
(2000), no. 2, 330–347. MR 1780480
(2001h:47021), http://dx.doi.org/10.1006/jfan.2000.3617
 10.
Mitsuru
Uchiyama and Morisuke
Hasumi, On some operator monotone functions, Integral
Equations Operator Theory 42 (2002), no. 2,
243–251. MR 1870442
(2002k:47044), http://dx.doi.org/10.1007/BF01275518
 1.
 R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics 169, SpringerVerlag, New York, 1997. MR 98i:15003
 2.
 W. Donoghue, Monotone matrix functions and analytic continuation, Grundlehren der mathematischen Wissenschaften 207, SpringerVerlag, New York and Heidelberg, 1974. MR 58:6279
 3.
 P. Borwein and T. Erdelyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics 161, SpringerVerlag, New York, 1995. MR 97e:41001
 4.
 F. Hansen and G. K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982), 229241. MR 83g:47020
 5.
 R. Horn and C. Johnson, Topics in matrix analysis, Cambridge Univ. Press, 1991. MR 92e:15003
 6.
 A. Koranyi, On a theorem of Löwner and its connections with resolvents of selfadjoint transformations, Acta Sci. Math. Szeged 17 (1956), 6370. MR 18:588c
 7.
 K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177216.
 8.
 M. Rosenblum and J. Rovnyak, Hardy classes and operator theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 1985. MR 87e:47001
 9.
 M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal. 175 (2000), 330347. MR 2001h:47021
 10.
 M. Uchiyama and M. Hasumi, On some operator monotone functions, Integral Equations Operator Theory 42 (2002), 243251. MR 2002k:47044
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
47A63,
15A48,
33C45,
30B40
Retrieve articles in all journals
with MSC (2000):
47A63,
15A48,
33C45,
30B40
Additional Information
Mitsuru Uchiyama
Affiliation:
Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka, 8114192, Japan
Email:
uchiyama@fukuokaedu.ac.jp
DOI:
http://dx.doi.org/10.1090/S0002994703033555
PII:
S 00029947(03)033555
Keywords:
Positive semidefinite operator,
operator monotone function,
orthogonal polynomials
Received by editor(s):
October 16, 2002
Published electronically:
June 10, 2003
Article copyright:
© Copyright 2003
American Mathematical Society
