Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rigidity in holomorphic and quasiregular dynamics


Authors: Gaven J. Martin and Volker Mayer
Journal: Trans. Amer. Math. Soc. 355 (2003), 4349-4363
MSC (2000): Primary 30C65; Secondary 37F45
DOI: https://doi.org/10.1090/S0002-9947-03-03160-X
Published electronically: July 2, 2003
MathSciNet review: 1990755
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider rigidity phenomena for holomorphic functions and then more generally for uniformly quasiregular maps.


References [Enhancements On Off] (What's this?)

  • 1. F. Berteloot and J.-J. Loeb, Spherical Hypersurfaces and Lattès Rational Maps, J. Math. Pures Appl. 77 (1998), 655-666. MR 99e:32043
  • 2. L. Carleson, P.W. Jones, and J.-Ch. Yoccoz, Julia and John, Bol. Soc. Bras. Mat. 25 (1994), 1-30. MR 95d:30040
  • 3. M. Denker, R.D. Mauldin, Z. Nitecki, and M. Urbanski, Conformal measures for rational functions revisited, Fund. Math. 157 (1998), 161-173. MR 99j:58122
  • 4. A.E. Eremenko and M. Yu. Lyubich, The dynamics of analytic transformations, Leningrad Math. J. 1 (1990), 563-634. MR 91b:58109
  • 5. H. Federer , Geometric Measure Theory, Springer Verlag (1969). MR 41:1976
  • 6. P. Haïssinsky, Rigidity and expansion for rational maps, J. London Math. Soc. (2) 63 (2001), 128-140. MR 2001m:37085
  • 7. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, 1978. MR 80k:53081
  • 8. N. I. Ivanov, Action of Möbius Transformations on Homeomorphisms: Stability and Rigidity, Geom. Funct. Anal. 6 (1996), 79-119. MR 97e:30075
  • 9. T. Iwaniec and G.J. Martin, Quasiregular Semigroups, Ann. Acad. Sci. Fenn. Math. 21 (1996), 241-254. MR 97i:30032
  • 10. O. Lehto and K.I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, 1973. MR 49:9202
  • 11. M. Lyubich, The dynamics of rational transforms: the topological picture, Russian Math. Surveys 41 : 4 (1986), no. 4, 43-117. MR 88g:58094
  • 12. M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Diff. Geometry 47 (1997), 17-94. MR 98k:58191
  • 13. R. Mañé, P. Sad and D. Sullivan, On the dynamics of rational maps, Ann. Scient. Éc. Norm. Sup. (4) 16 (1983), 193-217. MR 85j:58089
  • 14. G.J. Martin, Branch sets of uniformly quasiregular maps, Conformal Geometry and Dynamics 1 (1997), 24-27. MR 98d:30032
  • 15. G.J. Martin and V. Mayer, Local Dynamics of Uniformly Quasiregular mappings, preprint.
  • 16. O. Martio and U. Srebro, Periodic Quasimeromorphic Mappings in $\mathbb{R} ^n$, J. d'Analyse Math. 28 (1975), 20-40.
  • 17. V. Mayer, Uniformly Quasiregular mappings of Lattès' type, Conformal Geometry and Dynamics 1 (1997), 104-111. MR 98j:30017
  • 18. V. Mayer, Quasiregular analogues of critically finite rational functions with parabolic orbifold, J. d'Analyse Math. 75 (1998), 105-119. MR 2000a:30043
  • 19. C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342. MR 88a:30057
  • 20. C. McMullen, Complex Dynamics and Renormalization, Ann. Math. Studies, Princeton University Press (1994). MR 96b:58097
  • 21. C. McMullen, Hausdorff dimensions and conformal dynamics II: Geometrically finite rational maps, Comment. Math. Helv. 75 (2000), 535-593. MR 2001m:37089
  • 22. C. McMullen and D. Sullivan, Quasiconformal Homeomorphisms and Dynamics III. The Teichmüller Space of a Holomorphic Dynamical System, Adv. in Math. 135 (1998), 351-395. MR 99e:58145
  • 23. R. Miniowitz, Normal families of quasimeromorphic mappings, Proc. AMS 84 (1982), 35-43. MR 83c:30026
  • 24. F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), 2081-2099. MR 99h:58110
  • 25. M. Rees, Positive measure sets of ergodic rational maps, Ann. Scient. Éc. Norm. Sup. 19 (1986), 383-407. MR 88g:58100
  • 26. S. Rickman, Quasiregular Mappings, Springer-Verlag (1993). MR 95g:30026
  • 27. J.L. Schiff, Normal families, Universitext Springer-Verlag (1993). MR 94f:30046
  • 28. M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory and Dynamical Systems 5 (1985), 285-289. MR 87g:58104
  • 29. P. Tukia, On quasiconformal groups, J. d'Analyse Math. 46 (1986), 318-346. MR 87m:30043
  • 30. L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817. MR 52:757

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30C65, 37F45

Retrieve articles in all journals with MSC (2000): 30C65, 37F45


Additional Information

Gaven J. Martin
Affiliation: Department of Mathematics, University of Auckland, Auckland, New Zealand
Email: martin@math.auckland.ac.nz

Volker Mayer
Affiliation: UMR 8524 du CNRS - UFR de Mathématiques, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
Email: volker.mayer@univ-lille1.fr

DOI: https://doi.org/10.1090/S0002-9947-03-03160-X
Received by editor(s): October 19, 1999
Published electronically: July 2, 2003
Additional Notes: This research was partially supported by a grant from the Marsden Fund (NZ)
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society