Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On model complete differential fields


Authors: E. Hrushovski and M. Itai
Journal: Trans. Amer. Math. Soc. 355 (2003), 4267-4296
MSC (2000): Primary 03C60, 12H05
Published electronically: July 8, 2003
MathSciNet review: 1990753
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a geometric approach to definable sets in differentially closed fields, with emphasis on the question of orthogonality to a given strongly minimal set. Equivalently, within a family of ordinary differential equations, we consider those equations that can be transformed, by differential-algebraic transformations, so as to yield solutions of a given fixed first-order ODE $X$. We show that this sub-family is usually definable (in particular if $X$ lives on a curve of positive genus). As a corollary, we show the existence of many model-complete, superstable theories of differential fields.


References [Enhancements On Off] (What's this?)

  • 1. James Ax, On Schanuel’s conjectures, Ann. of Math. (2) 93 (1971), 252–268. MR 0277482
  • 2. Alexandru Buium, Effective bound for the geometric Lang conjecture, Duke Math. J. 71 (1993), no. 2, 475–499. MR 1233446, 10.1215/S0012-7094-93-07120-7
  • 3. Alexandru Buium, Differential algebraic groups of finite dimension, Lecture Notes in Mathematics, vol. 1506, Springer-Verlag, Berlin, 1992. MR 1176753
  • 4. G. Cherlin and S. Shelah, Superstable fields and groups, Ann. Math. Logic 18 (1980), no. 3, 227–270. MR 585519, 10.1016/0003-4843(80)90006-6
  • 5. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • 6. Ehud Hrushovski, Proof of Manin’s theorem by reduction to positive characteristic, Model theory and algebraic geometry, Lecture Notes in Math., vol. 1696, Springer, Berlin, 1998, pp. 197–205. MR 1678551, 10.1007/978-3-540-68521-0_11
  • 7. E. Hrushovski, ODE's of order 1 and a generalization of a theorem of Jouanolou (to appear).
  • 8. Ehud Hrushovski, Almost orthogonal regular types, Ann. Pure Appl. Logic 45 (1989), no. 2, 139–155. Stability in model theory, II (Trento, 1987). MR 1044121, 10.1016/0168-0072(89)90058-4
  • 9. E. Hrushovski, Z. Sokolovic, Strongly minimal sets in differentially closed fields, to appear in Transactions of the AMS
  • 10. E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 0010757
  • 11. E. R. Kolchin, Constrained extensions of differential fields, Advances in Math. 12 (1974), 141–170. MR 0340227
  • 12. E. R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151–1164. MR 0240106
  • 13. Serge Lang, Abelian varieties, Springer-Verlag, New York-Berlin, 1983. Reprint of the 1959 original. MR 713430
  • 14. Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
  • 15. Serge Lang, Introduction to algebraic geometry, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1972. Third printing, with corrections. MR 0344244
  • 16. Angus Macintyre, On 𝜔₁-categorical theories of fields, Fund. Math. 71 (1971), no. 1, 1–25. (errata insert). MR 0290954
  • 17. David Marker, Model theory of differential fields, Model theory, algebra, and geometry, Math. Sci. Res. Inst. Publ., vol. 39, Cambridge Univ. Press, Cambridge, 2000, pp. 53–63. MR 1773702
  • 18. Anand Pillay, Geometric stability theory, Oxford Logic Guides, vol. 32, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1429864
  • 19. Anand Pillay, Differential Galois theory. II, Ann. Pure Appl. Logic 88 (1997), no. 2-3, 181–191. Joint AILA-KGS Model Theory Meeting (Florence, 1995). MR 1600903, 10.1016/S0168-0072(97)00021-3
  • 20. Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
  • 21. Bruno Poizat, Une théorie de Galois imaginaire, J. Symbolic Logic 48 (1983), no. 4, 1151–1170 (1984) (French). MR 727805, 10.2307/2273680
  • 22. Maxwell Rosenlicht, Extensions of vector groups by abelian varieties, Amer. J. Math. 80 (1958), 685–714. MR 0099340
  • 23. Maxwell Rosenlicht, The nonminimality of the differential closure, Pacific J. Math. 52 (1974), 529–537. MR 0352068
  • 24. Gerald E. Sacks, Saturated model theory, W. A. Benjamin, Inc., Reading, Mass., 1972. Mathematics Lecture Note Series. MR 0398817
  • 25. Jean-Pierre Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1975 (French). Deuxième édition; Publication de l’Institut de Mathématique de l’Université de Nancago, No. VII; Actualités Scientifiques et Industrielles, No. 1264. MR 0466151
  • 26. Saharon Shelah, Uniqueness and characterization of prime models over sets for totally transcendental first-order theories, J. Symbolic Logic 37 (1972), 107–113. MR 0316239
  • 27. Saharon Shelah, Differentially closed fields, Israel J. Math. 16 (1973), 314–328. MR 0344116
  • 28. Pierre Samuel, Compléments à un article de Hans Grauert sur la conjecture de Mordell, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 55–62 (French). MR 0204430

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 03C60, 12H05

Retrieve articles in all journals with MSC (2000): 03C60, 12H05


Additional Information

E. Hrushovski
Affiliation: Department of Mathematics, Hebrew University, Jerusalem, Israel
Email: ehud@sunset.ma.huji.ac.il

M. Itai
Affiliation: Department of Mathematical Sciences, Tokai University, Hiratsuka 259-1292, Japan
Email: itai@ss.u-tokai.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9947-03-03264-1
Received by editor(s): August 1, 1998
Published electronically: July 8, 2003
Additional Notes: The first author thanks Miller Institute at the University of California, Berkeley
Article copyright: © Copyright 2003 American Mathematical Society