Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A pair of difference differential equations of Euler-Cauchy type


Author: David M. Bradley
Journal: Trans. Amer. Math. Soc. 355 (2003), 4985-5002
MSC (2000): Primary 34K06; Secondary 34K12, 34K25
DOI: https://doi.org/10.1090/S0002-9947-03-03223-9
Published electronically: July 24, 2003
MathSciNet review: 1997592
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study two classes of linear difference differential equations analogous to Euler-Cauchy ordinary differential equations, but in which multiple arguments are shifted forward or backward by fixed amounts. Special cases of these equations have arisen in diverse branches of number theory and combinatorics. They are also of use in linear control theory. Here, we study these equations in a general setting. Building on previous work going back to de Bruijn, we show how adjoint equations arise naturally in the problem of uniqueness of solutions. Exploiting the adjoint relationship in a new way leads to a significant strengthening of previous uniqueness results. Specifically, we prove here that the general Euler-Cauchy difference differential equation with advanced arguments has a unique solution (up to a multiplicative constant) in the class of functions bounded by an exponential function on the positive real line. For the closely related class of equations with retarded arguments, we focus on a corresponding class of solutions, locating and classifying the points of discontinuity. We also provide an explicit asymptotic expansion at infinity.


References [Enhancements On Off] (What's this?)

  • 1. R. Arratia, A. D. Barbour and S. Tavaré, ``Random Combinatorial Structures and Prime Factorizations,'' Notices Amer. Math. Soc. 44 (1997), no. 8, 903-910. MR 98i:60007
  • 2. R. Arratia, and S. Tavaré, ``The cycle structure of random permutations,'' Ann. Probab. 20 (1992), 1567-1591. MR 93g:60013
  • 3. K. Alladi, ``An Erdös-Kac theorem for integers without large prime factors,'' Acta Arithmetica 49 (1987), 81-105. MR 89b:11077
  • 4. N. C. Ankeny and H. Onishi, ``The general sieve,'' Acta Arithmetica 10 (1964), 31-62. MR 29:4740
  • 5. V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, ``Ordered cycle lengths in a random permutation,'' Pacific J. Math. 36 (1971), 603-613. MR 52:12037
  • 6. P. Billingsley, ``On the distribution of large prime divisors,'' Periodica Mathematica Hungarica 2 (1972), 283-289. MR 49:243
  • 7. D. Bradley, ``A sieve auxiliary function,'' Ph.D. Thesis, University of Illinois, Urbana, 1995.
  • 8. D. Bradley, ``A sieve auxiliary function,'' in Analytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam (B. Berndt et al. eds.), Progress in Math. 138, Birkhäuser, Boston (1996), 173-210. MR 97h:11099
  • 9. D. Bradley and H. Diamond, ``A difference differential equation of Euler-Cauchy type,'' J. Differential Equations 138 (1997), no. 2, 267-300. MR 99a:34172
  • 10. N. G. de Bruijn, ``On the number of uncancelled elements in the sieve of Eratosthenes,'' Nederl. Akad. Wetensch. Proc. (6) 53 (1950), 803-821. MR 12:11d
  • 11. N. G. de Bruijn, ``On the number of positive integers $\le x$and free of prime factors $>y$,'' Nederl. Akad. Wetensch. Proc. Ser. A 54 (Indag. Math. 13) (1951), 50-60. MR 13:724e
  • 12. N. G. de Bruijn, ``On the number of positive integers $\le x$and free of prime factors $>y$ II,'' Indag. Math. 28 (1966), 239-247. MR 34:5770
  • 13. N. G. de Bruijn and J. H. van Lint, ``Incomplete sums of multiplicative functions I, II,'' Nederl. Akad. Wetensch. Proc. Ser. A 67 (Indag. Math. 26) (1964), 339-347; 348-359. MR 30:4731
  • 14. A. A. Buchstab, ``Asymptotic estimates of a general number-theoretic function,'' Mat. Sbornik 44 (1937), 1239-1246.
  • 15. A. Y. Cheer and D. A. Goldston, ``A differential delay equation arising from the sieve of Eratosthenes,'' Math. Comp. 55 (1990), 129-141. MR 90j:11091
  • 16. H. Diamond, H. Halberstam, and H.-E. Richert, ``Combinatorial sieves of dimension exceeding one,'' J. Number Theory 28 (1988), 306-346. MR 89g:11080
  • 17. H. Diamond, H. Halberstam, and H.-E. Richert, ``Combinatorial sieves of dimension exceeding one II,'' in Analytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam (Bruce C. Berndt et al. eds.), Progress in Math. 138, Birkhäuser, Boston (1996), 265-308. MR 97e:11112
  • 18. H. Diamond, H. Halberstam, and H.-E. Richert, ``A boundary value problem for a pair of differential delay equations related to sieve theory I,'' in Analytic Number Theory: Proceedings of a Conference in Honor of P. Bateman (B. Berndt et al. eds.), Birkhäuser, Boston (1990), 133-157. MR 92a:11107
  • 19. H. Diamond, H. Halberstam, and H.-E. Richert, ``A boundary value problem for a pair of differential delay equations related to sieve theory II,'' J. Number Theory 45 (1993), 129-185. MR 94j:11089
  • 20. H. Diamond, H. Halberstam, and H.-E. Richert, ``A boundary value problem for a pair of differential delay equations related to sieve theory III,'' J. Number Theory 47 (1994), 300-328. MR 95e:11100
  • 21. H. Diamond, H. Halberstam, and H.-E. Richert, ``Sieve auxiliary functions,'' in Number Theory: Proceedings of the First Conference of the Canadian Number Theory Association (Richard Mollin ed.), W. de Gruyter & Co. (1990), 99-113. MR 92f:11122
  • 22. H. Diamond, H. Halberstam, and H.-E. Richert, ``Sieve auxiliary functions II,'' in A tribute to Emil Grosswald: Number Theory and Related Analysis (Marvin Knopp et al. eds.) Contemporary Math., 143 Amer. Math. Soc., Providence, RI (1993), 247-253. MR 94c:11090
  • 23. H. Diamond, H. Halberstam, and H.-E. Richert, ``Estimation of the sieve auxiliary functions $q_\kappa$ in the range $1<\kappa<2$,'' Analysis 14 (1994), 75-102. MR 95g:11091
  • 24. K. Dickman, ``On the frequency of numbers containing primes of a certain relative magnitude,'' Ark. Mat. Ast. Fys. 22 (1930), 1-14.
  • 25. S. W. Golomb, ``Random permutations,'' Bull. Amer. Math. Soc. 70 (1964), 747.
  • 26. V. Goncharov, ``Sur la distribution des cycles dans les permutations,'' C. R. (Doklady) Acad. Sci. URSS 35 (1942), 267-269. MR 4:102g
  • 27. F. Grupp, ``On difference-differential equations in the theory of sieves,'' J. Number Theory 24 (1986), 154-173. MR 87k:11101
  • 28. H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. MR 54:12689
  • 29. D. Hensley, ``The sum of $\alpha^{\Omega(n)}$ over integers $n\le x$ with all factors between $\alpha$ and $y$,'' J. Number Theory 18 (1984), 206-212. MR 85i:11071
  • 30. A. Hildebrand, ``On the number of positive integers $\le x$ and free of prime factors $>y$,'' J. Number Theory 22 (1986), 289-307. MR 87d:11066
  • 31. A. Hildebrand, ``The asymptotic behavior of the solutions of a class of differential-difference equations,'' J. London Math. Soc. (2) 42 (1990), no. 1, 11-31. MR 92f:11123
  • 32. A. Hildebrand and G. Tenenbaum, ``On a class of differential-difference equations arising in number theory,'' J. Anal. Math. 61 (1993), 145-179. MR 94i:11069
  • 33. H. Iwaniec, ``Rosser's sieve,'' Acta Arithmetica 36 (1980), 171-202. MR 81m:10086
  • 34. D. E. Knuth and L. T. Pardo, ``Analysis of a simple factorization algorithm,'' Theor. Comp. Sci. 3 (1976), 321-348. MR 58:16485
  • 35. B. V. Levin and A. S. Fainleib, ``Application of some integral equations to problems of number theory,'' Russian Math. Surveys 22 (1967), 119-204. MR 37:5174
  • 36. H. Maier, ``Primes in short intervals,'' Michigan Math. J., 32 (1985), 221-225. MR 86i:11049
  • 37. P. Moree, ``Psixyology and Diophantine Equations,'' Ph.D. Thesis, Rijksuniversiteit te Leiden, 1993. MR 96e:11114
  • 38. P. W. Purdom and J. H. Williams, ``Cycle length in a random function,'' Trans. Amer. Math. Soc. 133 (1968), 547-551. MR 37:3616
  • 39. H. J. J. te Riele, ``Numerical solution of two coupled nonlinear equations related to the limits of Buchstab's iteration sieve,'' Afdeling Numerieke Wiskunde 86, Mathematisch Centrum, Amsterdam, 1980. MR 81j:65048
  • 40. L. Shepp and S. P. Lloyd, ``Ordered cycle lengths in a random permutation,'' Trans. Amer. Math. Soc. 121 (1966), 340-357. MR 33:3320
  • 41. F. Wheeler, ``On two differential-difference equations arising in analytic number theory,'' Ph.D. Thesis, University of Illinois, Urbana, 1988.
  • 42. F. Wheeler, ``Two differential-difference equations arising in number theory,'' Trans. Amer. Math. Soc. 318 (1990), 491-523. MR 90g:11134

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34K06, 34K12, 34K25

Retrieve articles in all journals with MSC (2000): 34K06, 34K12, 34K25


Additional Information

David M. Bradley
Affiliation: Department of Mathematics and Statistics, University of Maine, 5752 Neville Hall, Orono, Maine 04469-5752
Email: dbradley@member.ams.org, bradley@math.umaine.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03223-9
Keywords: Difference differential equations, integral transforms, adjoint relation, Dickman-de Bruijn function, sieves
Received by editor(s): March 19, 2002
Received by editor(s) in revised form: October 15, 2002
Published electronically: July 24, 2003
Additional Notes: This research was supported by the University of Maine summer faculty research fund.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society