Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Framings of knots satisfying differential relations


Authors: James J. Hebda and Chichen M. Tsau
Journal: Trans. Amer. Math. Soc. 356 (2004), 267-281
MSC (2000): Primary 57M25; Secondary 53A04, 53C23, 57R40
DOI: https://doi.org/10.1090/S0002-9947-03-03222-7
Published electronically: August 21, 2003
MathSciNet review: 2020032
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper introduces the notion of a differential framing relation for knots in a three-dimensional manifold. There is a canonical map from the space of knots that satisfy a framing relation into the space of framed knots. Under reasonable assumptions this canonical map is a weak homotopy equivalence.


References [Enhancements On Off] (What's this?)

  • 1. D. Bao, S. Chern, and Z. Shen (eds.), Finsler Geometry, Amer. Math. Soc., Providence, 1996. MR 97b:53001
  • 2. C. Benham, X. Lin, and D. Miller, Subspaces of Knot Spaces, Proc. Amer. Math. Soc. 129 (2001), 3121-3127. MR 2002m:57006
  • 3. W. Blaschke, Differential Geometrie, vol. I, Chelsea Publishing Company, New York, 1967.
  • 4. G. Calugareanu, Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants, Czechoslovak Math. J. 11 (1961), 588-625. MR 26:6868
  • 5. Y. Eliashberg and M. Gromov, Removal of singularities of smooth mappings, Math. USSR Izvestija 5 (1971), 615-639. MR 46:903
  • 6. H. Gluck and L.-H. Pan, Knot theory in the presence of curvature, I, Preprint (February, 1994).
  • 7. H. Gluck and L.-H. Pan, Embedding and knotting of positive curvature surfaces in $3$-space, Topology 37 (1998), 851-873. MR 98m:57008
  • 8. M. Gromov, Partial Differential Relations, Springer-Verlag, 1986. MR 90a:58201
  • 9. J. Hebda and C. Tsau, Normal Holonomy and Writhing Number of Smooth Knots, (SLU Preprint) (2000).
  • 10. M. Hirsch, Differential Topology, Springer-Verlag, 1976. MR 56:6669
  • 11. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, 1959. MR 21:4462
  • 12. D. Spring, Convex Integration Theory, Birkhäuser Verlag, 1998. MR 99e:58024
  • 13. D. Struik, Lectures on Classical Differential Geometry, 2nd ed., Dover, New York, 1988. MR 89b:53002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M25, 53A04, 53C23, 57R40

Retrieve articles in all journals with MSC (2000): 57M25, 53A04, 53C23, 57R40


Additional Information

James J. Hebda
Affiliation: Department of Mathematics, Saint Louis University, St. Louis, Missouri 63103
Email: hebdajj@slu.edu

Chichen M. Tsau
Affiliation: Department of Mathematics, Saint Louis University, St. Louis, Missouri 63103
Email: tsaumc@slu.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03222-7
Received by editor(s): May 14, 2001
Received by editor(s) in revised form: September 11, 2002
Published electronically: August 21, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society