Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Exponential sums on $\mathbf{A}^n$, II


Authors: Alan Adolphson and Steven Sperber
Journal: Trans. Amer. Math. Soc. 356 (2004), 345-369
MSC (2000): Primary 11L07, 11T23, 14F20, 14F30
DOI: https://doi.org/10.1090/S0002-9947-03-03324-5
Published electronically: May 29, 2003
MathSciNet review: 2020036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a vanishing theorem for the $p$-adic cohomology of exponential sums on $\mathbf{A}^n$. In particular, we obtain new classes of exponential sums on $\mathbf{A}^n$ that have a single nonvanishing $p$-adic cohomology group. The dimension of this cohomology group equals a sum of Milnor numbers.


References [Enhancements On Off] (What's this?)

  • 1. A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. of Math. 130 (1989), 367-406. MR 91e:11094
  • 2. -, Exponential sums on $\mathbf{A}^n$, Israel J. Math. 120 (2000), 3-21. MR 2002g:11123
  • 3. P. Deligne, La conjecture de Weil, I, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 273-307. MR 49:5013
  • 4. -, La conjecture de Weil, II, Inst. Hautes Etudes Sci. Publ. Math. 52 (1980), 137-252. MR 83c:14017
  • 5. J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, Invent. Math. 106 (1991), 275-294. MR 93a:14019
  • 6. B. Dwork, On the zeta function of a hypersurface, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 5-68. MR 28:3039
  • 7. R. García López, Exponential sums and singular hypersurfaces, Manuscripta Math. 97 (1998), 45-58. MR 99e:11112
  • 8. N. Katz, Sommes exponentielles, Astérisque 79 (1980), 1-209. MR 82m:10059
  • 9. M. Kita, On vanishing of the twisted rational de Rham cohomology associated with hypergeometric functions, Nagoya Math. J. 135 (1994), 55-85. MR 95j:33043
  • 10. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986. MR 88h:13001
  • 11. P. Robba, Une introduction naïve aux cohomologies de Dwork, Mémoire Soc. Math. France (nouvelle série) no. 23, 61-105, supplement to Bull. Soc. Math. France 114 (1986). MR 88a:14023
  • 12. K. Saito, On a generalization of de-Rham lemma, Ann. Inst. Fourier, Grenoble 26 (1976), 165-170. MR 54:1276
  • 13. J.-P. Serre, Endomorphismes complètement continus des espaces de Banach $p$-adiques, Inst. Hautes Etudes Sci. Publ. Math. 12 (1962), 69-85. MR 26:1733

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11L07, 11T23, 14F20, 14F30

Retrieve articles in all journals with MSC (2000): 11L07, 11T23, 14F20, 14F30


Additional Information

Alan Adolphson
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email: adolphs@math.okstate.edu

Steven Sperber
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: sperber@math.umn.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03324-5
Keywords: Exponential sum, $p$-adic cohomology, $l$-adic cohomology
Received by editor(s): May 29, 2002
Received by editor(s) in revised form: February 13, 2003
Published electronically: May 29, 2003
Additional Notes: The first author was supported in part by NSA Grant MDA904-97-1-0068 and NSF Grant DMS-0070510
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society