Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Eigenvalue and gap estimates for the Laplacian acting on $p$-forms


Authors: Pierre Guerini and Alessandro Savo
Journal: Trans. Amer. Math. Soc. 356 (2004), 319-344
MSC (2000): Primary 58J50; Secondary 58J32
DOI: https://doi.org/10.1090/S0002-9947-03-03336-1
Published electronically: August 25, 2003
MathSciNet review: 2020035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the gap of the first eigenvalue of the Hodge Laplacian acting on $p$-differential forms of a manifold with boundary, for consecutive values of the degree $p$.

We first show that the gap may assume any sign. Then we give sufficient conditions on the intrinsic and extrinsic geometry to control it. Finally, we estimate the first Hodge eigenvalue of manifolds whose boundaries have some degree of convexity.


References [Enhancements On Off] (What's this?)

  • 1. I. Chavel, Eigenvalues in Riemannian geometry, Academic Press, 1984. MR 86g:58140
  • 2. B. Colbois and G. Courtois, A note on the first eigenvalue of the Laplacian acting on $p$-forms, Manuscripta Math. 68 (1990), 143-160. MR 91g:58290
  • 3. J. Dodziuk, Eigenvalues of the Laplacian on forms, Proc Amer. Math. Society 85, 3 (1982). MR 84k:58223
  • 4. L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, J. Arch. Ration. Mech. Anal. 116, No.2, (1991), 153-160. MR 93h:35146
  • 5. S. Gallot and D. Meyer, Opérateur de courbure et Laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl. 54 (1975), 259-284. MR 56:13128
  • 6. S. Gallot and D. Meyer, D'un résultat hilbertien à un principe de comparaison entre spectres. Applications, Ann. Scient. Ec. Norm. Sup., 4 Serie, 21 (1988), 561-591. MR 90k:58236
  • 7. G. Gentile and V. Pagliara, Riemannian metrics with large first eigenvalue on forms of degree $p$, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3855-3858. MR 96b:58115
  • 8. P. Guerini, Spectre du Laplacien de Hodge-de Rham: Estimées sur les Variétés Convexes, Preprint.
  • 9. P. Guerini, Prescription du Spectre du Laplacien de Hodge-de Rham, Preprint Universität Zürich 2002.
  • 10. P. Li and S-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, Proc. Symp. Pure Math. 36 (1980), 205-239. MR 81i:58050
  • 11. J.K. McGowan, The $p$-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann. 297 (1993), 4, 725-745. MR 94g:58239
  • 12. H.P. McKean, An upper bound for the spectrum of $\Delta$ on a manifold of negative curvature, J. Diff. Geom. 4 (1970), 359-366. MR 42:1009
  • 13. L. Payne and H. Weinberger, Lower bounds for vibration frequencies of elastically supportes membranes and plates, J. Soc. Ind. Appl. Math. 5 (1957), 171-182. MR 19:1110c
  • 14. R.C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525-533. MR 58:2657
  • 15. A. Savo, A mean-value lemma and applications, Bull. Soc. Math. France 129 (2001), no. 4, 505-542.
  • 16. J. Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, J. Math. Soc. Japan 53 (2001), no. 2, 307-320. MR 2002a:58031
  • 17. J. Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, Ann. Glob. Anal. Geom. to appear.
  • 18. H.F. Weinberger, An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636. MR 18:63c

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58J50, 58J32

Retrieve articles in all journals with MSC (2000): 58J50, 58J32


Additional Information

Pierre Guerini
Affiliation: Institut für Mathematik, Universität Zürich Irchel, Winterthurerstrasse 90, CH-8057 Zürich, Switzerland
Email: pguerini@math.unizh.ch

Alessandro Savo
Affiliation: Dipartimento di Metodi e Modelli Matematici, Università di Roma I La Sapienza, Via Antonio Scarpa 16, 00161 Roma, Italy
Email: savo@dmmm.uniroma1.it

DOI: https://doi.org/10.1090/S0002-9947-03-03336-1
Keywords: Hodge Laplacian, eigenvalues, gaps, convex manifolds
Received by editor(s): January 13, 2003
Published electronically: August 25, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society