Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An index for gauge-invariant operators and the Dixmier-Douady invariant


Authors: Victor Nistor and Evgenij Troitsky
Journal: Trans. Amer. Math. Soc. 356 (2004), 185-218
MSC (2000): Primary 46L80
DOI: https://doi.org/10.1090/S0002-9947-03-03370-1
Published electronically: August 25, 2003
MathSciNet review: 2020029
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathcal{G}\to B$ be a bundle of compact Lie groups acting on a fiber bundle $Y \to B$. In this paper we introduce and study gauge-equivariant $K$-theory groups $K_\mathcal{G}^i(Y)$. These groups satisfy the usual properties of the equivariant $K$-theory groups, but also some new phenomena arise due to the topological non-triviality of the bundle $\mathcal{G}\to B$. As an application, we define a gauge-equivariant index for a family of elliptic operators $(P_b)_{b \in B}$ invariant with respect to the action of $\mathcal{G}\to B$, which, in this approach, is an element of $K_\mathcal{G}^0(B)$. We then give another definition of the gauge-equivariant index as an element of $K_0(C^*(\mathcal{G}))$, the $K$-theory group of the Banach algebra $C^*(\mathcal{G})$. We prove that $K_0(C^*(\mathcal{G})) \simeq K^0_\mathcal{G}(\mathcal{G})$ and that the two definitions of the gauge-equivariant index are equivalent. The algebra $C^*(\mathcal{G})$ is the algebra of continuous sections of a certain field of $C^*$-algebras with non-trivial Dixmier-Douady invariant. The gauge-equivariant $K$-theory groups are thus examples of twisted $K$-theory groups, which have recently turned out to be useful in the study of Ramond-Ramond fields.


References [Enhancements On Off] (What's this?)

  • 1. O. Alvarez, I. M. Singer, and B. Zumino, Gravitational anomalies and the family's index theorem, Comm. Math. Phys. 96 (1984), 409-417. MR 86c:58136
  • 2. L. Alvarez-Gaumé, An introduction to anomalies, NATO Adv. Sci. Inst. Ser. B. Phys. , vol. 141, Plenum, New York, 1986, Fundamental problems in gauge field theory, Erice 1985. MR 88c:81077
  • 3. M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York - Amsterdam, 1967. MR 36:7130
  • 4. M. F. Atiyah and R. Bott, The Yang-Mills equations over riemann surfaces, Phil. Trans. R. Soc. Lond. 308 (1982), 523-615. MR 85k:14006
  • 5. M. F. Atiyah and I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119-138. MR 43:5554
  • 6. T. Aubin, Espaces de Sobolev sur les variétés Riemanniennes, Bull. Sc. Math. 100 (1970), 149-173. MR 58:7692
  • 7. A. Belavin and V. Knizhnik, Algebraic geometry and the geometry of quantum strings, Phys. Lett. B 168 (1986), 201-206. MR 87i:81189
  • 8. J.-L. Bismut and D. Freed, The analysis of elliptic families II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys. 107 (1986), 103-163. MR 88h:58110b
  • 9. B. Blackadar, K-theory for Operator Algebras, Springer-Verlag, New York, 1986. MR 88g:46082
  • 10. P. Bouwknegt, A. Carey, V. Mathai, M. Murray, and D. Stevenson, Twisted $K$-theory and $K$-theory of bundle gerbes, E-print, hep-th/0106194.
  • 11. T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate texts in Math. 98, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1985. MR 86i:22023
  • 12. J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston, MA, 1993. MR 94b:57030
  • 13. A. Connes, Noncommutative geometry, Academic Press, San Diego, 1994. MR 95j:46063
  • 14. M. Dadarlat, A suspension theorem for continuous trace $C\sp *$-algebras, Proc. Amer. Math. Soc. 120 (1994), 761-769. MR 94e:46123
  • 15. P. Deligne and D. S. Freed, Classical field theory, Quantum fields and strings: A course for mathematicians (P. Deligne, P. Etingof, D. S. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D. Morrison, and E. Witten, eds. ), AMS, Providence, RI, 1999, pp. 137-225. MR 2000i:53109
  • 16. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1967. MR 39:7442
  • 17. P. Donovan and M. Karoubi, Graded Brauer groups and $K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 5-25. MR 43:8075
  • 18. D. Freed and M. Hopkins, On Ramond-Ramond fields and $K$-theory, JHEP 0005 (2000), 044. MR 2001k:81221
  • 19. D. Freed and E. Witten, Anomalies in string theory with $D$-branes, E-print, hep-th/9907189.
  • 20. J. Glimm and A. Jaffe, Quantum physics. A functional integral point of view, second ed., Springer-Verlag, New York, NY, 1987, xxii+535 pp. MR 89k:81001
  • 21. M. Hilsum and G. Skandalis, Morphismes $K$-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov (d'après une conjecture d'A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 325-390. MR 90a:58169
  • 22. L. Hörmander, The analysis of linear partial differential operators, vol. 3, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1985. MR 95h:35255
  • 23. J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate texts in Math. 9, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo, 1972.
  • 24. A. Jaffe and J. Taubes, Vortices and monopoles. Structure of static gauge theories, Progress in Physics, vol. 2, Birkhäuser, Boston, MA, 1980, v+287 pp. MR 48:2197
  • 25. M. Karoubi, Algèbres de Clifford et K-théorie, Ann. Sci. Éc. Norm. Sup., 4e sér. 1 (1968), no. 2, 161-270. MR 39:287
  • 26. -, K-theory. An introduction, Grundlehren der Mathematischen Wissenschaften, vol. 226, Springer-Verlag, Berlin - Heidelberg - New York, 1978. MR 58:7605
  • 27. G. G. Kasparov, The operator $K$-functor and extensions of $C\sp{\ast} $-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571-636, 719. MR 81m:58075
  • 28. N. Kuiper, The homotopy type of the unitary group of the Hilbert space, Topology 3 (1965), 19-30. MR 31:4034
  • 29. R. Lauter, B. Monthubert, and V. Nistor, Pseudodifferential analysis on continuous family groupoids, Documenta Math. (2000), 625-655 (electronic). MR 2002f:58046
  • 30. R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: a groupoid approach, to appear.
  • 31. V. Mathai, R. B. Melrose, and I. M. Singer, The index of projective families of elliptic operators, math. DG/0206002.
  • 32. G. Moore and Ph. Nelson, The æthology of sigma model anomalies, Comm. Math. Phys. 100 (1985), 83-132. MR 87h:81190
  • 33. G. Moore and E. Witten, Self-duality, Ramond-Ramond fields, and $K$-theory, E-print, hep-th/9912086.
  • 34. V. Nistor, An index theorem for gauge-invariant families: The case of solvable groups, submitted for publication.
  • 35. -, Higher McKean-Singer index formulae and non-commutative geometry, Contemporary Mathematics 145 (1993), 439-451. MR 94d:58140
  • 36. V. Nistor and E. Troitsky, An index theorem for gauge-invariant families: The case of compact groups (tentative title, work in progress).
  • 37. D. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Func. Anal. i Pril. 19 (1985), 37-41 (in Russian). English translation, Funct. Anal. Appl. 19, 1985. MR 86g:32035
  • 38. J. Roe, An index theorem on open manifolds. i, J. Differential Geom. 27 (1988), 87-113. MR 89a:58102
  • 39. J. Rosenberg, The role of $K$-theory in non-commutative algebraic topology, Operator algebras and $K$-theory (San Francisco, Calif., 1981), Contemp. Math., no. 10, AMS, Providence R. I., 1982, pp. 155-182. MR 84h:46097
  • 40. -, $K$-theory of group $C^*$-algebras, foliation $C^*$-algebras, and crossed products, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986), Contemp. Math., no. 70, AMS, Providence R. I., 1988, pp. 251-301. MR 90a:46185
  • 41. -, Continuous trace $C^*$-algebras from the bundle theoretic point of view, J. Aust. Math. Soc. A 47 (1989), 368-381. MR 91d:46090
  • 42. S. Sakai, $C^*$-algebras and $W^*$-algebras, Classics in Mathematics, Springer-Verlag, Berlin, 1998, xii+256 pp., reprint of the 1971 edition. MR 98k:46085
  • 43. G. Skandalis, Kasparov's bivariant $K$-theory and applications, Exposition. Math. 9 (1991), no. 3, 193-250. MR 92h:46101
  • 44. Evgenij V. Troitsky, ``Twice'' equivariant $C\sp *$-index theorem and the index theorem for families, Acta Appl. Math. 68 (2001), no. 1-3, 39-70, Noncommutative geometry and operator $K$-theory.
  • 45. E. Witten, Two dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), 303-368. MR 93m:58017
  • 46. -, $D$-branes and $K$-theory, JHEP, no. 12 (1998), paper 19. MR 2000e:81151
  • 47. -, Overview of $K$-theory applied to strings, Int. J. Mod. Phys. A 16 (2001), 693-706. MR 2002c:81175

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L80

Retrieve articles in all journals with MSC (2000): 46L80


Additional Information

Victor Nistor
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Email: nistor@math.psu.edu

Evgenij Troitsky
Affiliation: Department of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia
Email: troitsky@mech.math.msu.su

DOI: https://doi.org/10.1090/S0002-9947-03-03370-1
Received by editor(s): April 22, 2002
Published electronically: August 25, 2003
Additional Notes: The first author was partially supported by NSF Young Investigator Award DMS-9457859 and NSF Grants DMS 991981 and 0200808
The second author was partially supported by RFFI Grant 99-01-01202 and Presidential Grant 00-15-99263.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society