Backward stability for polynomial maps with locally connected Julia sets

Authors:
Alexander Blokh and Lex Oversteegen

Journal:
Trans. Amer. Math. Soc. **356** (2004), 119-133

MSC (2000):
Primary 37F10; Secondary 37E25

DOI:
https://doi.org/10.1090/S0002-9947-03-03415-9

Published electronically:
August 25, 2003

MathSciNet review:
2020026

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study topological dynamics on *unshielded* planar continua with weak expanding properties at cycles for which we prove that the absence of wandering continua implies backward stability. Then we deduce from this that a polynomial with a locally connected Julia set is backward stable outside any neighborhood of its attracting and neutral cycles. For a conformal measure this easily implies that one of the following holds: 1. for -a.e. , ; 2. for -a.e. , for a critical point depending on .

**[Bar]**Julia A. Barnes,*Conservative exact rational maps of the sphere*, J. Math. Anal. Appl.**230**(1999), no. 2, 350–374. MR**1672223**, https://doi.org/10.1006/jmaa.1998.6213**[B]**Alexander M. Blokh,*The “spectral” decomposition for one-dimensional maps*, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), vol. 4, Springer, Berlin, 1995, pp. 1–59. MR**1346496****[BL1]**A. Blokh and G. Levin,*Growing trees, laminations and the dynamics on the Julia set*, IHES Preprint IHES/M/99/77 (1999), pp. 1-40.**[BL2]**A. Blokh and G. Levin,*On dynamics of vertices of locally connected polynomial Julia sets*, Proc. Amer. Math. Soc.**130**(2002), no. 11, 3219–3230. MR**1912999**, https://doi.org/10.1090/S0002-9939-02-06698-4**[BL3]**A. Blokh, G. Levin,*An inequality for laminations, Julia sets and ``growing trees''*, Erg. Th. and Dyn. Sys.**22**(2002), pp. 63-97.**[BLyu]**A. M. Blokh and M. Yu. Lyubich,*Measurable dynamics of 𝑆-unimodal maps of the interval*, Ann. Sci. École Norm. Sup. (4)**24**(1991), no. 5, 545–573. MR**1132757****[BMO1]**Alexander M. Blokh, John C. Mayer, and Lex G. Oversteegen,*Recurrent critical points and typical limit sets of rational maps*, Proc. Amer. Math. Soc.**127**(1999), no. 4, 1215–1220. MR**1485461**, https://doi.org/10.1090/S0002-9939-99-04721-8**[BMO2]**Alexander M. Blokh, John C. Mayer, and Lex G. Oversteegen,*Recurrent critical points and typical limit sets of rational maps*, Proc. Amer. Math. Soc.**127**(1999), no. 4, 1215–1220. MR**1485461**, https://doi.org/10.1090/S0002-9939-99-04721-8**[BM]**A. Blokh, M. Misiurewicz,*Attractors for graph critical rational maps*, Trans. Amer. Math. Soc.**354**(2002), pp. 3639-3661.**[CG]**Lennart Carleson and Theodore W. Gamelin,*Complex dynamics*, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR**1230383****[DMNUrb]**M. Denker, R. D. Mauldin, Z. Nitecki, and M. Urbański,*Conformal measures for rational functions revisited*, Fund. Math.**157**(1998), no. 2-3, 161–173. Dedicated to the memory of Wiesław Szlenk. MR**1636885****[DU91]**Manfred Denker and Mariusz Urbański,*On the existence of conformal measures*, Trans. Amer. Math. Soc.**328**(1991), no. 2, 563–587. MR**1014246**, https://doi.org/10.1090/S0002-9947-1991-1014246-4**[Do]**Adrien Douady,*Descriptions of compact sets in 𝐶*, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 429–465. MR**1215973****[GPS]**P. Grzegorczyk, F. Przytycki, and W. Szlenk,*On iterations of Misiurewicz’s rational maps on the Riemann sphere*, Ann. Inst. H. Poincaré Phys. Théor.**53**(1990), no. 4, 431–444. Hyperbolic behaviour of dynamical systems (Paris, 1990). MR**1096102****[Kurat]**K. Kuratowski,*Topology. Vol. II*, New edition, revised and augmented. Translated from the French by A. Kirkor, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968. MR**0259835****[L]**G. Levin,*On backward stability of holomorphic dynamical systems*, Fund. Math.**158**(1998), no. 2, 97–107. MR**1656942****[Lyu]**M. Yu. Lyubich,*Typical behavior of trajectories of the rational mapping of a sphere*, Dokl. Akad. Nauk SSSR**268**(1983), no. 1, 29–32 (Russian). MR**687919****[Ma]**Ricardo Mañé,*On a theorem of Fatou*, Bol. Soc. Brasil. Mat. (N.S.)**24**(1993), no. 1, 1–11. MR**1224298**, https://doi.org/10.1007/BF01231694**[McM]**Curtis T. McMullen,*Complex dynamics and renormalization*, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR**1312365****[Mi]**John Milnor,*On the concept of attractor*, Comm. Math. Phys.**99**(1985), no. 2, 177–195. MR**790735**

John Milnor,*Correction and remarks: “On the concept of attractor”*, Comm. Math. Phys.**102**(1985), no. 3, 517–519. MR**818833****[Pra]**E. Prado,*Ergodicity of conformal measures for unimodal polynomials*, Tech. Report 6, SUNY-Stony Brook, 1996, Institute for Mathematical Sciences.**[P]**Feliks Przytycki,*Conical limit set and Poincaré exponent for iterations of rational functions*, Trans. Amer. Math. Soc.**351**(1999), no. 5, 2081–2099. MR**1615954**, https://doi.org/10.1090/S0002-9947-99-02195-9**[Sul]**Dennis Sullivan,*Conformal dynamical systems*, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR**730296**, https://doi.org/10.1007/BFb0061443**[Th]**W. Thurston,*The combinatorics of iterated rational maps*, Preprint (1985).**[Why42]**G. T. Whyburn,*Analytic topology*,**28**, AMS Coll. Publications, Providence, RI (1942). MR**4:86b**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37F10,
37E25

Retrieve articles in all journals with MSC (2000): 37F10, 37E25

Additional Information

**Alexander Blokh**

Affiliation:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170

Email:
ablokh@math.uab.edu

**Lex Oversteegen**

Affiliation:
Department of Mathematics, University of Alabama at Birmingham, Birmingham, Alabama 35294-1170

Email:
overstee@math.uab.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03415-9

Keywords:
Complex dynamics,
locally connected,
Julia set,
backward stability,
conformal measure

Received by editor(s):
October 10, 2001

Published electronically:
August 25, 2003

Additional Notes:
The first author was partially supported by NSF Grant DMS-9970363 and the second author by NSF grant DMS-0072626

Article copyright:
© Copyright 2003
American Mathematical Society