Ideals of the cohomology rings of Hilbert schemes and their applications
Authors:
WeiPing Li, Zhenbo Qin and Weiqiang Wang
Journal:
Trans. Amer. Math. Soc. 356 (2004), 245265
MSC (2000):
Primary 14C05; Secondary 14F25, 17B69
Published electronically:
August 26, 2003
MathSciNet review:
2020031
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the ideals of the rational cohomology ring of the Hilbert scheme of points on a smooth projective surface . As an application, for a large class of smooth quasiprojective surfaces , we show that every cup product structure constant of is independent of ; moreover, we obtain two sets of ring generators for the cohomology ring . Similar results are established for the ChenRuan orbifold cohomology ring of the symmetric product. In particular, we prove a ring isomorphism between and for a large class of smooth quasiprojective surfaces with numerically trivial canonical class.
 [CR]
W. Chen, Y. Ruan, A new cohomology theory for orbifold, arXiv:math.AG/0004129.
 [ES]
Geir
Ellingsrud and Stein
Arild Strømme, Towards the Chow ring of the Hilbert scheme
of 𝑃², J. Reine Angew. Math. 441 (1993),
33–44. MR
1228610 (94i:14004)
 [FG]
B. Fantechi, L. Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), 197227.
 [FH]
H.
K. Farahat and G.
Higman, The centres of symmetric group rings, Proc. Roy. Soc.
London Ser. A 250 (1959), 212–221. MR 0103935
(21 #2697)
 [Got]
Lothar
Göttsche, The Betti numbers of the Hilbert scheme of points on
a smooth projective surface, Math. Ann. 286 (1990),
no. 13, 193–207. MR 1032930
(91h:14007), http://dx.doi.org/10.1007/BF01453572
 [Gro]
I.
Grojnowski, Instantons and affine algebras. I. The Hilbert scheme
and vertex operators, Math. Res. Lett. 3 (1996),
no. 2, 275–291. MR 1386846
(97f:14041), http://dx.doi.org/10.4310/MRL.1996.v3.n2.a12
 [Lehn]
Manfred
Lehn, Chern classes of tautological sheaves on Hilbert schemes of
points on surfaces, Invent. Math. 136 (1999),
no. 1, 157–207. MR 1681097
(2000h:14003), http://dx.doi.org/10.1007/s002220050307
 [LS1]
Manfred
Lehn and Christoph
Sorger, Symmetric groups and the cup product on the cohomology of
Hilbert schemes, Duke Math. J. 110 (2001),
no. 2, 345–357. MR 1865244
(2002i:14004), http://dx.doi.org/10.1215/S0012709401110260
 [LS2]
M. Lehn, C. Sorger, The cup product of the Hilbert scheme for surfaces, Invent. Math. 152 (2003) 305329.
 [LQW1]
Weiping
Li, Zhenbo
Qin, and Weiqiang
Wang, Vertex algebras and the cohomology ring structure of Hilbert
schemes of points on surfaces, Math. Ann. 324 (2002),
no. 1, 105–133. MR 1931760
(2003h:14009), http://dx.doi.org/10.1007/s002080200330
 [LQW2]
Weiping
Li, Zhenbo
Qin, and Weiqiang
Wang, Generators for the cohomology ring of Hilbert schemes of
points on surfaces, Internat. Math. Res. Notices 20
(2001), 1057–1074. MR 1857595
(2002j:14003), http://dx.doi.org/10.1155/S1073792801000502
 [LQW3]
W.P. Li, Z. Qin, W. Wang, Stability of the cohomology rings of Hilbert schemes of points on surfaces, J. Reine Angew. Math. 554 (2003), 217234.
 [LQW4]
WeiPing
Li, Zhenbo
Qin, and Weiqiang
Wang, Hilbert schemes and 𝒲 algebras, Int. Math. Res.
Not. 27 (2002), 1427–1456. MR 1908477
(2003d:17033), http://dx.doi.org/10.1155/S1073792802110129
 [Na1]
Hiraku
Nakajima, Heisenberg algebra and Hilbert schemes of points on
projective surfaces, Ann. of Math. (2) 145 (1997),
no. 2, 379–388. MR 1441880
(98h:14006), http://dx.doi.org/10.2307/2951818
 [Na2]
Hiraku
Nakajima, Lectures on Hilbert schemes of points on surfaces,
University Lecture Series, vol. 18, American Mathematical Society,
Providence, RI, 1999. MR 1711344
(2001b:14007)
 [Ru1]
Y. Ruan, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), 187233, Contemp. Math., 312, Amer. Math. Soc., Providence, RI, 2002.
 [Ru2]
Y. Ruan, Cohomology ring of crepant resolutions of orbifolds, Preprint, arXiv:ath.AG/0108195.
 [QW]
Z. Qin, W. Wang, Hilbert schemes and symmetric products: a dictionary, Orbifolds in Mathematics and Physics (Madison, WI, 2001), 233257, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.
 [Uri]
B. Uribe, Orbifold cohomology of the symmetric product, Preprint, math.AT/0109125.
 [VW]
Cumrun
Vafa and Edward
Witten, A strong coupling test of 𝑆duality, Nuclear
Phys. B 431 (1994), no. 12, 3–77. MR 1305096
(95k:81138), http://dx.doi.org/10.1016/05503213(94)900973
 [Vas]
Eric
Vasserot, Sur l’anneau de cohomologie du schéma de
Hilbert de 𝐂², C. R. Acad. Sci. Paris Sér. I Math.
332 (2001), no. 1, 7–12 (French, with English
and French summaries). MR 1805619
(2001k:14012), http://dx.doi.org/10.1016/S07644442(00)017663
 [Wa]
W. Wang, The FarahatHigman ring of wreath products and Hilbert schemes, Preprint 2002, arXiv:math.QA/0205071.
 [CR]
 W. Chen, Y. Ruan, A new cohomology theory for orbifold, arXiv:math.AG/0004129.
 [ES]
 G. Ellingsrud, S. Strømme, Towards the Chow ring of the Hilbert scheme of , J. Reine Angew. Math. 441 (1993), 3344. MR 94i:14004
 [FG]
 B. Fantechi, L. Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), 197227.
 [FH]
 H. Farahat, G. Higman, The centres of symmetric group rings, Proc. Roy. Soc. (A) 250 (1959), 212221. MR 21:2697
 [Got]
 L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193207. MR 91h:14007
 [Gro]
 I. Grojnowski, Instantons and affine algebras I: the Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), 275291. MR 97f:14041
 [Lehn]
 M. Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157207. MR 2000h:14003
 [LS1]
 M. Lehn, C. Sorger, Symmetric groups and the cup product on the cohomology of Hilbert schemes, Duke Math. J. 110 (2001), 345357. MR 2002i:14004
 [LS2]
 M. Lehn, C. Sorger, The cup product of the Hilbert scheme for surfaces, Invent. Math. 152 (2003) 305329.
 [LQW1]
 W.P. Li, Z. Qin, W. Wang, Vertex algebras and the cohomology ring structure of Hilbert schemes of points on surfaces, Math. Ann. 324 (2002), no. 1, 105133. MR 2003h:14009
 [LQW2]
 W.P. Li, Z. Qin, W. Wang, Generators for the cohomology ring of Hilbert schemes of points on surfaces, Intern. Math. Res. Notices 20 (2001), 10571074. MR 2002j:14003
 [LQW3]
 W.P. Li, Z. Qin, W. Wang, Stability of the cohomology rings of Hilbert schemes of points on surfaces, J. Reine Angew. Math. 554 (2003), 217234.
 [LQW4]
 W.P. Li, Z. Qin, W. Wang, Hilbert schemes and algebras, Intern. Math. Res. Notices 27 (2002), 14271456. MR 2003d:17033
 [Na1]
 H. Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. Math. 145 (1997), 379388. MR 98h:14006
 [Na2]
 H. Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lect. Ser. 18, Amer. Math. Soc. (1999). MR 2001b:14007
 [Ru1]
 Y. Ruan, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), 187233, Contemp. Math., 312, Amer. Math. Soc., Providence, RI, 2002.
 [Ru2]
 Y. Ruan, Cohomology ring of crepant resolutions of orbifolds, Preprint, arXiv:ath.AG/0108195.
 [QW]
 Z. Qin, W. Wang, Hilbert schemes and symmetric products: a dictionary, Orbifolds in Mathematics and Physics (Madison, WI, 2001), 233257, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.
 [Uri]
 B. Uribe, Orbifold cohomology of the symmetric product, Preprint, math.AT/0109125.
 [VW]
 C. Vafa, E. Witten, A strong coupling test of duality, Nucl. Phys. B 431 (1994), 377. MR 95k:81138
 [Vas]
 E. Vasserot, Sur l'anneau de cohomologie du schéma de Hilbert de , C. R. Acad. Sci. Paris, Sér. I Math. 332 (2001), 712. MR 2001k:14012
 [Wa]
 W. Wang, The FarahatHigman ring of wreath products and Hilbert schemes, Preprint 2002, arXiv:math.QA/0205071.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
14C05,
14F25,
17B69
Retrieve articles in all journals
with MSC (2000):
14C05,
14F25,
17B69
Additional Information
WeiPing Li
Affiliation:
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Email:
mawpli@ust.hk
Zhenbo Qin
Affiliation:
Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email:
zq@math.missouri.edu
Weiqiang Wang
Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22904
Email:
ww9c@virginia.edu
DOI:
http://dx.doi.org/10.1090/S0002994703034226
PII:
S 00029947(03)034226
Keywords:
Heisenberg algebra,
Hilbert scheme,
cohomology ring.
Received by editor(s):
July 5, 2002
Published electronically:
August 26, 2003
Additional Notes:
The first author was partially supported by the grant HKUST6170/99P
The second author was partially supported by an NSF grant
The third author was partially supported by an NSF grant
Article copyright:
© Copyright 2003
American Mathematical Society
