Symmetries of flat rank two distributions and sub-Riemannian structures

Author:
Yuri L. Sachkov

Journal:
Trans. Amer. Math. Soc. **356** (2004), 457-494

MSC (2000):
Primary 53C17

Published electronically:
September 22, 2003

MathSciNet review:
2022707

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Flat sub-Riemannian structures are local approximations -- nilpotentizations -- of sub-Riemannian structures at regular points. Lie algebras of symmetries of flat maximal growth distributions and sub-Riemannian structures of rank two are computed in dimensions 3, 4, and 5.

**1.**A.A. Agrachev and Yu.L. Sachkov,*An Intrinsic Approach to the Control of Rolling Bodies*, Proceedings of the 38-th IEEE Conference on Decision and Control, vol. 1, Phoenix, Arizona, USA, December 7-10, 1999, 431-435.**2.**A. A. Agrachëv and A. V. Sarychev,*Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems*, Dokl. Akad. Nauk SSSR**295**(1987), no. 4, 777–781 (Russian); English transl., Soviet Math. Dokl.**36**(1988), no. 1, 104–108. MR**906538****3.**A. Bellaiche,*The tangent space in sub-Riemannian Geometry*, In Sub-Riemannian Geometry, A. Bellaiche and J.-J. Risler, eds., Birkhäuser, Basel, Swizerland, 1996.**4.**A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor′kova, I. S. Krasil′shchik, A. V. Samokhin, Yu. N. Torkhov, A. M. Verbovetsky, and A. M. Vinogradov,*Symmetries and conservation laws for differential equations of mathematical physics*, Translations of Mathematical Monographs, vol. 182, American Mathematical Society, Providence, RI, 1999. Edited and with a preface by Krasil′shchik and Vinogradov; Translated from the 1997 Russian original by Verbovetsky [A. M. Verbovetskiĭ] and Krasil′shchik. MR**1670044****5.**R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldshmidt, and P.A. Griffits,*Exterior differential systems*, Springer-Verlag, 1984.**6.**E. Cartan,*Les systèmes de Pfaff a cinque variables et les équations aux derivées partielles du second ordre*, Ann. Sci. École Normale**27**(1910), 3: 109-192.**7.**V.Ya. Gershkovich,*Engel structures on four dimensional manifolds*, Preprint series No. 10, The University of Melbourne, Dept. of Mathematics, 1992.**8.**Velimir Jurdjevic,*Geometric control theory*, Cambridge Studies in Advanced Mathematics, vol. 52, Cambridge University Press, Cambridge, 1997. MR**1425878****9.**J.P. Laumond,*Nonholonomic motion planning for mobile robots*, LAAS Report 98211, May 1998, LAAS-CNRS, Toulouse, France.**10.**Alessia Marigo and Antonio Bicchi,*Rolling bodies with regular surface: the holonomic case*, Differential geometry and control (Boulder, CO, 1997) Proc. Sympos. Pure Math., vol. 64, Amer. Math. Soc., Providence, RI, 1999, pp. 241–256. MR**1654560**, 10.1090/pspum/064/1654560**11.**M. M. Postnikov,*Gruppy i algebry Li*, “Nauka”, Moscow, 1982 (Russian). Lektsii po geometrii, Semestr V. [Lectures in geometry, Semester V]. MR**685757****12.**M. Vendittelli, J.P. Laumond, and G. Oriolo,*Steering nonholonomic systems via nilpotent approximations: The general two-trailer system*, IEEE International Conference on Robotics and Automation, May 10-15, Detroit, MI, 1999.**13.**A.M. Vershik and V.Ya. Gershkovich,*Nonholonomic dynamical systems. Geometry of distributions and variational problems*. (Russian) In Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamentalnye Napravleniya, Vol. 16, VINITI, Moscow, 1987, 5-85. English translation in*Encyclopedia of Math. Sci.*, Vol. 16; Dynamical Systems VII, Springer-Verlag, 1991.**14.**D. P. Zhelobenko and A. I. Shtern,*Predstavleniya grupp Li*, \cyr Spravochnaya Matematicheskaya Biblioteka. [Mathematical Reference Library], “Nauka”, Moscow, 1983 (Russian). MR**709598**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C17

Retrieve articles in all journals with MSC (2000): 53C17

Additional Information

**Yuri L. Sachkov**

Affiliation:
Program Systems Institute, Russian Academy of Sciences, 152140 Pereslavl-Zalessky, Russia

Email:
sachkov@sys.botik.ru

DOI:
https://doi.org/10.1090/S0002-9947-03-03342-7

Keywords:
Sub-Riemannian geometry,
symmetries,
distributions,
sub-Riemannian structures

Received by editor(s):
May 4, 2001

Published electronically:
September 22, 2003

Additional Notes:
This work was partially supported by the Russian Foundation for Basic Research, project No. 02-01-00506.

Article copyright:
© Copyright 2003
American Mathematical Society