On a conjecture of Whittaker concerning uniformization of hyperelliptic curves
Authors:
Ernesto Girondo and Gabino GonzálezDiez
Journal:
Trans. Amer. Math. Soc. 356 (2004), 691702
MSC (2000):
Primary 30F10; Secondary 14H15
Published electronically:
September 22, 2003
MathSciNet review:
2022716
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This article concerns an old conjecture due to E. T. Whittaker, aiming to describe the group uniformizing an arbitrary hyperelliptic Riemann surface as an index two subgroup of the monodromy group of an explicit second order linear differential equation with singularities at the values . Whittaker and collaborators in the thirties, and R. Rankin some twenty years later, were able to prove the conjecture for several families of hyperelliptic surfaces, characterized by the fact that they admit a large group of symmetries. However, general results of the analytic theory of moduli of Riemann surfaces, developed later, imply that Whittaker's conjecture cannot be true in its full generality. Recently, numerical computations have shown that Whittaker's prediction is incorrect for random surfaces, and in fact it has been conjectured that it only holds for the known cases of surfaces with a large group of automorphisms. The main goal of this paper is to prove that having many automorphisms is not a necessary condition for a surface to satisfy Whittaker's conjecture.
 1.
Rolf
Brandt and Henning
Stichtenoth, Die Automorphismengruppen hyperelliptischer
Kurven, Manuscripta Math. 55 (1986), no. 1,
83–92 (German, with English summary). MR 828412
(87m:14033), http://dx.doi.org/10.1007/BF01168614
 2.
Robert
Brooks, Hershel
M. Farkas, and Irwin
Kra, Number theory, theta identities, and modular curves,
Extremal Riemann surfaces (San Francisco, CA, 1995) Contemp. Math.,
vol. 201, Amer. Math. Soc., Providence, RI, 1997,
pp. 125–154. MR 1429197
(98m:11030), http://dx.doi.org/10.1090/conm/201/02606
 3.
E.
Bujalance, J.
M. Gamboa, and G.
Gromadzki, The full automorphism groups of hyperelliptic Riemann
surfaces, Manuscripta Math. 79 (1993), no. 34,
267–282. MR 1223022
(94f:20093), http://dx.doi.org/10.1007/BF02568345
 4.
David
V. Chudnovsky and Gregory
V. Chudnovsky, Computer algebra in the service of mathematical
physics and number theory, Computers in mathematics (Stanford, CA,
1986) Lecture Notes in Pure and Appl. Math., vol. 125, Dekker, New
York, 1990, pp. 109–232. MR 1068536
(92g:11122)
 5.
D.P. Dalzell, A note on automorphic functions. J. London Math. Soc. 5 (1930), 280282.
 6.
S.C. Dhar, On the uniformization of a special kind of algebraic curves of any genus. J. London Math. Soc. 10 (1935), 259263.
 7.
Brent
Everitt, A family of conformally asymmetric Riemann surfaces,
Glasgow Math. J. 39 (1997), no. 2, 221–225. MR 1460637
(98i:30055), http://dx.doi.org/10.1017/S0017089500032109
 8.
H.
M. Farkas and I.
Kra, Riemann surfaces, 2nd ed., Graduate Texts in Mathematics,
vol. 71, SpringerVerlag, New York, 1992. MR 1139765
(93a:30047)
 9.
L.R. Ford, Automorphic functions. Chelsea Publishing Company (1951).
 10.
Y. Fuertes, G. GonzálezDiez, Smooth hyperelliptic double coverings of hyperelliptic surfaces. Preprint.
 11.
Ernesto
Girondo and Gabino
GonzálezDiez, On extremal Riemann surfaces and their
uniformizing Fuchsian groups, Glasg. Math. J. 44
(2002), no. 1, 149–157. MR 1892291
(2002m:30053), http://dx.doi.org/10.1017/S0017089502010108
 12.
Joachim
A. Hempel, On the uniformization of the 𝑛punctured
sphere, Bull. London Math. Soc. 20 (1988),
no. 2, 97–115. MR 924235
(89c:30109), http://dx.doi.org/10.1112/blms/20.2.97
 13.
J. Hodgkinson, Note on the uniformization of hyperelliptic curves. J. London Math. Soc. 11 (1936), 185192.
 14.
Irwin
Kra, Accessory parameters for punctured
spheres, Trans. Amer. Math. Soc.
313 (1989), no. 2,
589–617. MR
958896 (89j:30062), http://dx.doi.org/10.1090/S00029947198909588960
 15.
M. Mursi, On the uniformisation of algebraic curves of genus . Proc. Edinburgh Math. Soc. 2 (1930), 101107.
 16.
R.
A. Rankin, The differential equations associated with the
uniformization of certain algebraic curves, Proc. Roy. Soc. Edinburgh.
Sect. A. 65 (1958), 35–62. MR 0092869
(19,1172d)
 17.
Peter
Turbek, An explicit family of curves with
trivial automorphism groups, Proc. Amer. Math.
Soc. 122 (1994), no. 3, 657–664. MR 1242107
(95a:14034), http://dx.doi.org/10.1090/S00029939199412421072
 18.
E.T. Whittaker, On the connexion of algebraic functions with automorphic functions. Phil. Trans. Roy. Soc. London 192A (1899), 132.
 19.
E.T. Whittaker, On hyperlemniscate functions. A family of automorphic functions. J. London Math. Soc. 4 (1929), 274278.
 20.
J.M. Whittaker, The uniformisation of algebraic curves. J. London Math. Soc. 5 (1930), 150154.
 21.
E.
T. Whittaker and G.
N. Watson, A course of modern analysis. An introduction to the
general theory of infinite processes and of analytic functions: with an
account of the principal transcendental functions, Fourth edition.
Reprinted, Cambridge University Press, New York, 1962. MR 0178117
(31 #2375)
 1.
 R. Brandt, H. Stichtenoth, Die Automorphismengruppen hyperelliptischer Kurven. Manuscripta Math. 55 (1986), 8392. MR 87m:14033
 2.
 R. Brooks, H.M. Farkas and I. Kra, Number theory, theta identities, and modular curves. Contemporary Mathematics 201. AMS. MR 98m:11030
 3.
 E. Bujalance, J.M. Gamboa, G. Gromadzki, The full automorphism group of hyperelliptic Riemann surfaces. Manuscripta Math. 79 (1993), 267282. MR 94f:20093
 4.
 D.V. Chudnovsky and G.V. Chudnovsky, Computer algebra in the service of mathematical physics and number theory. Lecture Notes in Pure and Applied Mathematics (1990). Dekker. MR 92g:11122
 5.
 D.P. Dalzell, A note on automorphic functions. J. London Math. Soc. 5 (1930), 280282.
 6.
 S.C. Dhar, On the uniformization of a special kind of algebraic curves of any genus. J. London Math. Soc. 10 (1935), 259263.
 7.
 B. Everitt, A family of conformally asymmetric Riemann surfaces. Glasgow Math. J. 39 (1997), 221225. MR 98i:30055
 8.
 H.M. Farkas, I. Kra, Riemann surfaces. SpringerVerlag (1992). MR 93a:30047
 9.
 L.R. Ford, Automorphic functions. Chelsea Publishing Company (1951).
 10.
 Y. Fuertes, G. GonzálezDiez, Smooth hyperelliptic double coverings of hyperelliptic surfaces. Preprint.
 11.
 E. Girondo, G. GonzálezDiez, On extremal Riemann surfaces and their uniformizing Fuchsian groups. Glasgow Math. J. 44 (2002), 149157. MR 2002m:30053
 12.
 J.A. Hempel, On the uniformization of the npunctured sphere. Bull. London Math. Soc. 20 (1988), 97115. MR 89c:30109
 13.
 J. Hodgkinson, Note on the uniformization of hyperelliptic curves. J. London Math. Soc. 11 (1936), 185192.
 14.
 I. Kra, Accesory parameters for punctured spheres. Transactions of the A.M.S. vol. 313 (1989), 589617. MR 89j:30062
 15.
 M. Mursi, On the uniformisation of algebraic curves of genus . Proc. Edinburgh Math. Soc. 2 (1930), 101107.
 16.
 R.A. Rankin, The differential equations associated with the uniformization of certain algebraic curves. Proc. Roy. Soc. Edinburgh Sect. A 65 (1958), 3562. MR 19:1172d
 17.
 P. Turbek, An explicit family of curves with trivial automorphism group. Proc. Amer. Math. Soc. 122 (1994), 657664. MR 95a:14034
 18.
 E.T. Whittaker, On the connexion of algebraic functions with automorphic functions. Phil. Trans. Roy. Soc. London 192A (1899), 132.
 19.
 E.T. Whittaker, On hyperlemniscate functions. A family of automorphic functions. J. London Math. Soc. 4 (1929), 274278.
 20.
 J.M. Whittaker, The uniformisation of algebraic curves. J. London Math. Soc. 5 (1930), 150154.
 21.
 E.T. Whittaker, G.N. Watson, A course of modern analysis. 4th. ed., Cambridge U. Press (1927). MR 31:2375 (1962 reprint)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
30F10,
14H15
Retrieve articles in all journals
with MSC (2000):
30F10,
14H15
Additional Information
Ernesto Girondo
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid 28049, Spain
Email:
ernesto.girondo@uam.es
Gabino GonzálezDiez
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid 28049, Spain
Email:
gabino.gonzalez@uam.es
DOI:
http://dx.doi.org/10.1090/S000299470303441X
PII:
S 00029947(03)03441X
Keywords:
Accessory parameters,
Schwarzian derivative,
uniformization of Riemann surfaces,
hyperelliptic curves
Received by editor(s):
July 23, 2002
Published electronically:
September 22, 2003
Additional Notes:
Both authors were supported in part by Grant BFM20000031, DGI.MCYT
Article copyright:
© Copyright 2003
American Mathematical Society
