Universal covers for Hausdorff limits of noncompact spaces

Authors:
Christina Sormani and Guofang Wei

Journal:
Trans. Amer. Math. Soc. **356** (2004), 1233-1270

MSC (2000):
Primary 53C20

DOI:
https://doi.org/10.1090/S0002-9947-03-03412-3

Published electronically:
October 6, 2003

MathSciNet review:
2021619

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if is the Gromov-Hausdorff limit of a sequence of complete manifolds, , with a uniform lower bound on Ricci curvature, then has a universal cover.

**[AbGl]**U. Abresch, D. Gromoll,*On complete manifolds with nonnegative Ricci curvature*, J. Amer. Math. Soc. 3 (1990) 355-374. MR**91a:53071****[An1]**M. T. Anderson*Convergence and rigidity of manifolds under Ricci curvature bounds*, Invent. Math. 102 (1990), no. 2, 429-445. MR**92c:53024****[An2]**M. Anderson,*On the topology of complete manifolds of non-negative Ricci curvature*, Topology 29 (1990), no. 1, 41-55. MR**91b:53041****[BiCr]**R. Bishop, R. Crittenden, Geometry of manifolds. Reprint of the 1964 original. AMS Chelsea Publishing, Providence, RI, 2001. MR**2002d:53001****[BoMe]**B.H. Bowditch, G. Mess,*A**-dimensional Kleinian group.*Trans. Amer. Math. Soc. 344 (1994), no. 1, 391-405. MR**95f:57057****[BBI]**D. Burago, Y. Burago, S. Ivanov, A course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33, AMS, 2001. MR**2002e:53053****[ChCo1]**J. Cheeger, T. Colding,*Lower bounds on Ricci curvature and almost rigidity of warped products*, Ann. of Math. (2) 144 (1996), no. 1, 189-237. MR**97h:53038****[ChCo2]**J. Cheeger, T. Colding,*On the structure of spaces with Ricci curvature bounded below I*, J. Diff. Geom. 46 (1997) 406-480. MR**98k:53044****[ChCo3]**J. Cheeger, T. Colding,*On the structure of spaces with Ricci curvature bounded below II*, J. Differential Geom. 54 (2000), no. 1, 13-35. MR**2003a:53043****[ChCo4]**J. Cheeger, T. Colding,*On the structure of spaces with Ricci curvature bounded below III*, J. Differential Geom. 54 (2000), no. 1, 37-74. MR**2003a:53044****[Fed]**H. Federer, Geometric Measure Theory, Springer, 1969. MR**41:1976****[Gr]**M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, PM 152, Birkhauser, 1999. MR**2000d:53065****[GP]**K. Grove, P. Petersen,*Manifolds near the boundary of existence*, J. Diff. Geom. 33 (1991) 379-394. MR**92a:53067****[Ma]**W. Massey, A basic course in algebraic topology, GTM 127, Springer-Verlag, 1991. MR**92c:55001****[Me]**X. Menguy,*Examples with bounded diameter growth and infinite topological type.*Duke Math. J. 102 (2000), no. 3, 403-412. MR**2001c:53041****[Mi]**J. Milnor,*A note on curvature and fundamental group*, J. Diff. Geom. 2 (1968) 1-7. MR**38:636****[Mun]**M. E. Munroe, Introduction to measure and integration. Addison-Wesley Publishing Company, Inc., Cambridge, Mass., 1953. MR**14:734a****[Nab]**P. Nabonnand,*Sur les variétés riemanniennes complètes à courbure de Ricci positive,*C. R. Acad. Sci. Paris Sér. A-B 291 (1980), 591-593. MR**81m:53054****[Pl1]**G. Perelman,*The beginning of the Morse theory on Alexandrov spaces*, St. Petersburg Math. Journ. 5 (1994), no. 1, 205-214. MR**94h:53054****[Pl2]**G. Perelman,*Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers*, in ``Comparison Geometry" (Berkeley, CA, 1993-94), 157-163. MR**98h:53062****[Pe]**P. Petersen, Riemannian geometry, GTM 171, Springer-Verlag, 1998. MR**98m:53001****[Po]**L. Potyagalo,*Finitely generated Kleinian groups in**-space and**-manifolds of infinite homotopy type*, Trans. Amer. Math. Soc. 344 (1994), no. 1, 57-77. MR**94m:57030****[So1]**C. Sormani,*Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups*, Journal of Differential Geometry 54 (2000) 547-559. MR**2003a:53047****[So2]**C. Sormani,*On Loops Representing Elements of the Fundamental Group of a Complete Manifold with Nonnegative Ricci Curvature*, Indiana Univ. Math. J. 50 (2001), no. 4, 1867-1883. MR**2003b:53038****[SoWei]**C. Sormani and G. Wei,*Hausdorff Convergence and Universal Covers*, Transactions of the American Mathematical Society 353 (2001) 3585-3602. MR**2002e:53057****[Sp]**E. Spanier, Algebraic Topology, McGraw-Hill, Inc., 1966. MR**35:1007****[Wei]**G. Wei,*Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups*, Bull. Amer. Math. Soci. Vol. 19, no. 1 (1988), 311-313. MR**89h:53101**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C20

Retrieve articles in all journals with MSC (2000): 53C20

Additional Information

**Christina Sormani**

Affiliation:
Department of Mathematics and Computer Science, Lehman College, City University of New York, Bronx, New York 10468

Email:
sormani@g230.lehman.cuny.edu

**Guofang Wei**

Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106

Email:
wei@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03412-3

Received by editor(s):
July 24, 2002

Received by editor(s) in revised form:
February 28, 2003

Published electronically:
October 6, 2003

Additional Notes:
The first author was partially supported by NSF Grant # DMS-0102279 and a grant from The City University of New York PSC-CUNY Research Award Program

The second author was partially supported by NSF Grant # DMS-9971833

Article copyright:
© Copyright 2003
American Mathematical Society