Universal covers for Hausdorff limits of noncompact spaces
Authors:
Christina Sormani and Guofang Wei
Journal:
Trans. Amer. Math. Soc. 356 (2004), 12331270
MSC (2000):
Primary 53C20
Published electronically:
October 6, 2003
MathSciNet review:
2021619
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that if is the GromovHausdorff limit of a sequence of complete manifolds, , with a uniform lower bound on Ricci curvature, then has a universal cover.
 [AbGl]
Uwe
Abresch and Detlef
Gromoll, On complete manifolds with nonnegative
Ricci curvature, J. Amer. Math. Soc.
3 (1990), no. 2,
355–374. MR 1030656
(91a:53071), http://dx.doi.org/10.1090/S08940347199010306566
 [An1]
Michael
T. Anderson, Convergence and rigidity of manifolds under Ricci
curvature bounds, Invent. Math. 102 (1990),
no. 2, 429–445. MR 1074481
(92c:53024), http://dx.doi.org/10.1007/BF01233434
 [An2]
Michael
T. Anderson, On the topology of complete manifolds of nonnegative
Ricci curvature, Topology 29 (1990), no. 1,
41–55. MR
1046624 (91b:53041), http://dx.doi.org/10.1016/00409383(90)90024E
 [BiCr]
Richard
L. Bishop and Richard
J. Crittenden, Geometry of manifolds, AMS Chelsea Publishing,
Providence, RI, 2001. Reprint of the 1964 original. MR 1852066
(2002d:53001)
 [BoMe]
B.
H. Bowditch and G.
Mess, A 4dimensional Kleinian
group, Trans. Amer. Math. Soc.
344 (1994), no. 1,
391–405. MR 1240944
(95f:57057), http://dx.doi.org/10.1090/S00029947199412409446
 [BBI]
Dmitri
Burago, Yuri
Burago, and Sergei
Ivanov, A course in metric geometry, Graduate Studies in
Mathematics, vol. 33, American Mathematical Society, Providence, RI,
2001. MR
1835418 (2002e:53053)
 [ChCo1]
Jeff
Cheeger and Tobias
H. Colding, Lower bounds on Ricci curvature and the almost rigidity
of warped products, Ann. of Math. (2) 144 (1996),
no. 1, 189–237. MR 1405949
(97h:53038), http://dx.doi.org/10.2307/2118589
 [ChCo2]
Jeff
Cheeger and Tobias
H. Colding, On the structure of spaces with Ricci curvature bounded
below. I, J. Differential Geom. 46 (1997),
no. 3, 406–480. MR 1484888
(98k:53044)
 [ChCo3]
Jeff
Cheeger and Tobias
H. Colding, On the structure of spaces with Ricci curvature bounded
below. II, J. Differential Geom. 54 (2000),
no. 1, 13–35. MR 1815410
(2003a:53043)
 [ChCo4]
Jeff
Cheeger and Tobias
H. Colding, On the structure of spaces with Ricci curvature bounded
below. III, J. Differential Geom. 54 (2000),
no. 1, 37–74. MR 1815411
(2003a:53044)
 [Fed]
Herbert
Federer, Geometric measure theory, Die Grundlehren der
mathematischen Wissenschaften, Band 153, SpringerVerlag New York Inc., New
York, 1969. MR
0257325 (41 #1976)
 [Gr]
Misha
Gromov, Metric structures for Riemannian and nonRiemannian
spaces, Progress in Mathematics, vol. 152, Birkhäuser
Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [
MR0682063 (85e:53051)]; With appendices by M.\ Katz, P.\ Pansu and S.\
Semmes; Translated from the French by Sean Michael Bates. MR 1699320
(2000d:53065)
 [GP]
Karsten
Grove and Peter
Petersen, Manifolds near the boundary of existence, J.
Differential Geom. 33 (1991), no. 2, 379–394.
MR
1094462 (92a:53067)
 [Ma]
William
S. Massey, A basic course in algebraic topology, Graduate
Texts in Mathematics, vol. 127, SpringerVerlag, New York, 1991. MR 1095046
(92c:55001)
 [Me]
X.
Menguy, Examples with bounded diameter growth and infinite
topological type, Duke Math. J. 102 (2000),
no. 3, 403–412. MR 1756103
(2001c:53041), http://dx.doi.org/10.1215/S0012709400102323
 [Mi]
J.
Milnor, A note on curvature and fundamental group, J.
Differential Geometry 2 (1968), 1–7. MR 0232311
(38 #636)
 [Mun]
M.
E. Munroe, Introduction to measure and integration,
AddisonWesley Publishing Company, Inc., Cambridge, Mass., 1953. MR 0053186
(14,734a)
 [Nab]
Philippe
Nabonnand, Sur les variétés riemanniennes
complètes à courbure de Ricci positive, C. R. Acad. Sci.
Paris Sér. AB 291 (1980), no. 10,
A591–A593 (French, with English summary). MR 600003
(81m:53054)
 [Pl1]
G.
Ya. Perel′man, Elements of Morse theory on Aleksandrov
spaces, Algebra i Analiz 5 (1993), no. 1,
232–241 (Russian, with Russian summary); English transl., St.
Petersburg Math. J. 5 (1994), no. 1, 205–213.
MR
1220498 (94h:53054)
 [Pl2]
G.
Perelman, Construction of manifolds of positive Ricci curvature
with big volume and large Betti numbers, Comparison geometry
(Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30,
Cambridge Univ. Press, Cambridge, 1997, pp. 157–163. MR 1452872
(98h:53062)
 [Pe]
Peter
Petersen, Riemannian geometry, Graduate Texts in Mathematics,
vol. 171, SpringerVerlag, New York, 1998. MR 1480173
(98m:53001)
 [Po]
L.
Potyagaĭlo, Finitely generated Kleinian groups in
3space and 3manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994), no. 1, 57–77. MR 1250823
(94m:57030), http://dx.doi.org/10.1090/S00029947199412508236
 [So1]
Christina
Sormani, Nonnegative Ricci curvature, small linear diameter growth
and finite generation of fundamental groups, J. Differential Geom.
54 (2000), no. 3, 547–559. MR 1823314
(2003a:53047)
 [So2]
C.
Sormani, On loops representing elements of the fundamental group of
a complete manifold with nonnegative Ricci curvature, Indiana Univ.
Math. J. 50 (2001), no. 4, 1867–1883. MR 1889085
(2003b:53038), http://dx.doi.org/10.1512/iumj.2001.50.2048
 [SoWei]
Christina
Sormani and Guofang
Wei, Hausdorff convergence and universal
covers, Trans. Amer. Math. Soc.
353 (2001), no. 9,
3585–3602 (electronic). MR 1837249
(2002e:53057), http://dx.doi.org/10.1090/S0002994701028021
 [Sp]
Edwin
H. Spanier, Algebraic topology, McGrawHill Book Co., New
YorkToronto, Ont.London, 1966. MR 0210112
(35 #1007)
 [Wei]
Guofang
Wei, Examples of complete manifolds of
positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 1, 311–313. MR 940494
(89h:53101), http://dx.doi.org/10.1090/S027309791988156534
 [AbGl]
 U. Abresch, D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990) 355374. MR 91a:53071
 [An1]
 M. T. Anderson Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429445. MR 92c:53024
 [An2]
 M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990), no. 1, 4155. MR 91b:53041
 [BiCr]
 R. Bishop, R. Crittenden, Geometry of manifolds. Reprint of the 1964 original. AMS Chelsea Publishing, Providence, RI, 2001. MR 2002d:53001
 [BoMe]
 B.H. Bowditch, G. Mess, A dimensional Kleinian group. Trans. Amer. Math. Soc. 344 (1994), no. 1, 391405. MR 95f:57057
 [BBI]
 D. Burago, Y. Burago, S. Ivanov, A course in Metric Geometry. Graduate Studies in Mathematics, Vol. 33, AMS, 2001. MR 2002e:53053
 [ChCo1]
 J. Cheeger, T. Colding, Lower bounds on Ricci curvature and almost rigidity of warped products, Ann. of Math. (2) 144 (1996), no. 1, 189237. MR 97h:53038
 [ChCo2]
 J. Cheeger, T. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom. 46 (1997) 406480. MR 98k:53044
 [ChCo3]
 J. Cheeger, T. Colding, On the structure of spaces with Ricci curvature bounded below II, J. Differential Geom. 54 (2000), no. 1, 1335. MR 2003a:53043
 [ChCo4]
 J. Cheeger, T. Colding, On the structure of spaces with Ricci curvature bounded below III, J. Differential Geom. 54 (2000), no. 1, 3774. MR 2003a:53044
 [Fed]
 H. Federer, Geometric Measure Theory, Springer, 1969. MR 41:1976
 [Gr]
 M. Gromov, Metric structures for Riemannian and nonRiemannian spaces, PM 152, Birkhauser, 1999. MR 2000d:53065
 [GP]
 K. Grove, P. Petersen, Manifolds near the boundary of existence, J. Diff. Geom. 33 (1991) 379394. MR 92a:53067
 [Ma]
 W. Massey, A basic course in algebraic topology, GTM 127, SpringerVerlag, 1991. MR 92c:55001
 [Me]
 X. Menguy, Examples with bounded diameter growth and infinite topological type. Duke Math. J. 102 (2000), no. 3, 403412. MR 2001c:53041
 [Mi]
 J. Milnor, A note on curvature and fundamental group, J. Diff. Geom. 2 (1968) 17. MR 38:636
 [Mun]
 M. E. Munroe, Introduction to measure and integration. AddisonWesley Publishing Company, Inc., Cambridge, Mass., 1953. MR 14:734a
 [Nab]
 P. Nabonnand, Sur les variétés riemanniennes complètes à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. AB 291 (1980), 591593. MR 81m:53054
 [Pl1]
 G. Perelman, The beginning of the Morse theory on Alexandrov spaces, St. Petersburg Math. Journ. 5 (1994), no. 1, 205214. MR 94h:53054
 [Pl2]
 G. Perelman, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, in ``Comparison Geometry" (Berkeley, CA, 199394), 157163. MR 98h:53062
 [Pe]
 P. Petersen, Riemannian geometry, GTM 171, SpringerVerlag, 1998. MR 98m:53001
 [Po]
 L. Potyagalo, Finitely generated Kleinian groups in space and manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994), no. 1, 5777. MR 94m:57030
 [So1]
 C. Sormani, Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups, Journal of Differential Geometry 54 (2000) 547559. MR 2003a:53047
 [So2]
 C. Sormani, On Loops Representing Elements of the Fundamental Group of a Complete Manifold with Nonnegative Ricci Curvature, Indiana Univ. Math. J. 50 (2001), no. 4, 18671883. MR 2003b:53038
 [SoWei]
 C. Sormani and G. Wei, Hausdorff Convergence and Universal Covers, Transactions of the American Mathematical Society 353 (2001) 35853602. MR 2002e:53057
 [Sp]
 E. Spanier, Algebraic Topology, McGrawHill, Inc., 1966. MR 35:1007
 [Wei]
 G. Wei, Examples of complete manifolds of positive Ricci curvature with nilpotent isometry groups, Bull. Amer. Math. Soci. Vol. 19, no. 1 (1988), 311313. MR 89h:53101
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
53C20
Retrieve articles in all journals
with MSC (2000):
53C20
Additional Information
Christina Sormani
Affiliation:
Department of Mathematics and Computer Science, Lehman College, City University of New York, Bronx, New York 10468
Email:
sormani@g230.lehman.cuny.edu
Guofang Wei
Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106
Email:
wei@math.ucsb.edu
DOI:
http://dx.doi.org/10.1090/S0002994703034123
PII:
S 00029947(03)034123
Received by editor(s):
July 24, 2002
Received by editor(s) in revised form:
February 28, 2003
Published electronically:
October 6, 2003
Additional Notes:
The first author was partially supported by NSF Grant # DMS0102279 and a grant from The City University of New York PSCCUNY Research Award Program
The second author was partially supported by NSF Grant # DMS9971833
Article copyright:
© Copyright 2003
American Mathematical Society
