Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete hyperelliptic integrals of the first kind and their non-oscillation


Authors: Lubomir Gavrilov and Iliya D. Iliev
Journal: Trans. Amer. Math. Soc. 356 (2004), 1185-1207
MSC (2000): Primary 34C08; Secondary 14D05, 14K20, 34C07
DOI: https://doi.org/10.1090/S0002-9947-03-03432-9
Published electronically: September 22, 2003
MathSciNet review: 2021617
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $P(x)$ be a real polynomial of degree $2g+1$, $H=y^2+P(x)$ and $\delta(h)$ be an oval contained in the level set $\{H=h\}$. We study complete Abelian integrals of the form

\begin{displaymath}I(h)=\int_{\delta(h)} \frac{(\alpha_0+\alpha_1 x+\ldots + \alpha_{g-1}x^{g-1})dx}{y}, \;\;h\in \Sigma, \end{displaymath}

where $\alpha_i$ are real and $\Sigma\subset \mathbb{R}$ is a maximal open interval on which a continuous family of ovals $\{\delta(h)\}$ exists. We show that the $g$-dimensional real vector space of these integrals is not Chebyshev in general: for any $g>1$, there are hyperelliptic Hamiltonians $H$ and continuous families of ovals $\delta(h)\subset\{H=h\}$, $h\in\Sigma$, such that the Abelian integral $I(h)$ can have at least $[\frac32g]-1$ zeros in $\Sigma$. Our main result is Theorem 1 in which we show that when $g=2$, exceptional families of ovals $\{\delta(h)\}$ exist, such that the corresponding vector space is still Chebyshev.


References [Enhancements On Off] (What's this?)

  • 1. N. A'Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes. I. Math. Ann. 213 (1975), 1-32. MR 51:13282
  • 2. E. Arbarello, M. Cornalba, P.A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. 1, Springer, New York, 1985. MR 86h:14019
  • 3. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, vols. 1 and 2, Monographs in Mathematics, Birkhäuser, Boston, 1985 and 1988. MR 86f:58018, MR 89g:58024
  • 4. V.I. Arnold, Yu.S. Il'yashenko, Ordinary Differential Equations, in: Dynamical Systems I, Encyclopaedia of Math. Sci., vol. 1, Springer, Berlin, 1988.
  • 5. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, New York, 1988. MR 89h:58049
  • 6. V.I. Arnold, Sur quelques problèmes de la théorie des systèmes dynamiques, Topological Methods in Nonlinear Analysis 4 (1994), 209-225. MR 96i:58001
  • 7. V.I. Arnold, Some unsolved problems in the theory of differential equations and mathematical physics, Russian Math. Surveys 44 (1989), no. 4, 157-171. MR 90m:00003
  • 8. V.I. Arnold, Ten problems, in: Theory of singularities and its applications, Adv. Soviet Math. 1, pp. 1-8, Amer. Math. Soc., Providence, 1990. MR 91k:58001
  • 9. E. Brieskorn, Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math. 2 (1970), 103-161. MR 42:2509
  • 10. A. Dimca, Singularities and Topology of Hypersurfaces, Springer, Berlin, 1992. MR 94b:32058
  • 11. A. Gasull, W. Li, J. Llibre, Zh. Zhang, Chebyshev property of complete elliptic integrals and its application to Abelian integrals, Pacific J. Math. 202 (2002), no. 2, 341-361. MR 2002m:34046
  • 12. L. Gavrilov, Isochronicity of plane polynomial Hamiltonian systems, Nonlinearity 10 (1997), no. 2, 433-448. MR 98b:58143
  • 13. L. Gavrilov, Petrov modules and zeros of Abelian integrals, Bull. Sci. Math. 122 (1998), no. 8, 571-584. MR 99m:32043
  • 14. L. Gavrilov, Abelian integrals related to Morse polynomials and perturbations of plane Hamiltonian vector fields, Ann. Inst. Fourier 49 (1999), no. 2, 611-652. MR 2000c:34081
  • 15. L. Gavrilov, Nonoscillation of elliptic integrals related to cubic polynomials with symmetry of order three, Bull. London Math. Soc. 30 (1998), no. 2, 267-273. MR 99a:34077
  • 16. L. Gavrilov, The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math. 143 (2001), 449-497. MR 2002g:34069
  • 17. A.B. Givental, Sturm's theorem for hyperelliptic integrals, Leningrad Math. J. 1 (1990), 1157-1163. MR 91c:58038
  • 18. P.A. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Appl. Math., John Wiley and Sons, New York, 1978. MR 80b:14001
  • 19. D. Hilbert, Mathematische probleme, Gesammelte Abhandlungen III, Springer-Verlag, Berlin (1935), pp. 403-479. MR 41:8201c
  • 20. E. Horozov, I.D. Iliev, Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians, Nonlinearity 11 (1998), no. 6, 1521-1537. MR 99j:34036
  • 21. D. Novikov and S. Yakovenko, Tangential Hilbert problem for perturbations of hyperelliptic Hamiltonian systems, Electron. Res. Announc. Amer. Math. Soc. 5 (1999), 55-65 (electronic). MR 2000a:34065
  • 22. G.S. Petrov, Number of zeros of complete elliptic integrals, Funct. Anal. Appl. 18 (1984), 72-73; 20 (1986), 37-40; 21 (1987), 87-88; 22 (1988), 37-40; 23 (1989), 88-89; 24 (1990), 45-50. MR 89i:33002, MR 92c:33036
  • 23. L.S. Pontryagin, On dynamic systems close to Hamiltonian systems, Zh. Eksp. Teor. Fiz. 4 (1934), 234-238 (Russian).
  • 24. R. Roussarie, Bifurcation of Planar Vector Fields and Hilbert's sixteenth Problem, Progress in Mathematics, vol. 164, Birkhäuser, Basel, 1998. MR 99k:58129

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34C08, 14D05, 14K20, 34C07

Retrieve articles in all journals with MSC (2000): 34C08, 14D05, 14K20, 34C07


Additional Information

Lubomir Gavrilov
Affiliation: Laboratoire Emile Picard, CNRS UMR 5580, Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex, France
Email: l.gavrilov@picard.ups-tlse.fr

Iliya D. Iliev
Affiliation: Institute of Mathematics, Bulgarian Academy of Sciences, P.O. Box 373, 1090 Sofia, Bulgaria
Email: iliya@math.bas.bg

DOI: https://doi.org/10.1090/S0002-9947-03-03432-9
Received by editor(s): December 18, 2002
Published electronically: September 22, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society