Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Semilinear parabolic equations involving measures and low regularity data

Authors: H. Amann and P. Quittner
Journal: Trans. Amer. Math. Soc. 356 (2004), 1045-1119
MSC (2000): Primary 35K55, 35K60, 35K90, 28B05
Published electronically: September 22, 2003
MathSciNet review: 1984467
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A detailed study of abstract semilinear evolution equations of the form $\dot u+Au=\mu(u)$ is undertaken, where $-A$ generates an analytic semigroup and $\mu(u)$ is a Banach space valued measure depending on the solution. Then it is shown that the general theorems apply to a variety of semilinear parabolic boundary value problems involving measures in the interior and on the boundary of the domain. These results extend far beyond the known results in this field. A particularly new feature is the fact that the measures may depend nonlinearly and possibly nonlocally on the solution.

References [Enhancements On Off] (What's this?)

  • 1. H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel J. Math. 45 (1983), 225-254. MR 85i:35043
  • 2. -, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function Spaces, Differential Operators and Nonlinear Analysis (H.J. Schmeisser and H. Triebel, eds.), Teubner, Stuttgart, Leipzig, 1993, 9-126. MR 94m:35153
  • 3. -, Linear and quasilinear parabolic problems, volume I: Abstract linear theory, Birkhäuser, Basel, 1995. MR 96g:34088
  • 4. -, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 16-98. MR 2002b:76028
  • 5. -, Linear parabolic problems involving measures, Rev. R. Acad. Cien. Serie A. Mat. 95 (2001), 85-119.
  • 6. H. Amann and P. Quittner, Elliptic boundary value problems involving measures: existence, regularity, and multiplicity, Advances in Diff. Equations 3 (1998), 753-813. MR 2000a:35063
  • 7. J.M. Arrieta, A.N. Carvalho and A. Rodríguez-Bernal, Parabolic problems with nonlinear boundary conditions and critical nonlinearities, J. Differ. Equations 156 (1999), 376-406. MR 2000f:35075
  • 8. J.M. Arrieta, P. Quittner and A. Rodríguez-Bernal, Parabolic problems with dynamical boundary condition and singular initial data, Differ. Integral Equations 14 (2001), 1487-1510. MR 2002h:35149
  • 9. J. Baek and M. Kwak, Singular solutions of semilinear parabolic equations in several space dimensions, J. Korean Math. Soc. 34 (1997), 1049-1064. MR 98i:35083
  • 10. P. Baras and M. Pierre, Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Analyse Non Linéaire, Ann. Inst. H. Poincaré 2 (1985), 185-212. MR 87j:45032
  • 11. M. Ben-Artzi, P. Souplet and F.B. Weissler, Sur la non-existence et la non-unicité des solutions du problème de Cauchy pour une équation parabolique semi-linéaire, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), 371-376. MR 2000i:35077
  • 12. -, The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures et Appl. 81 (2002), 343-378.
  • 13. H.A. Biagioni, L. Cadeddu and T. Gramchev, Parabolic equations with conservative nonlinear term and singular initial data, Nonlinear Anal. TMA 30 (1997), 2489-2496. MR 98k:35110
  • 14. H.A. Biagioni and T. Gramchev, Evolution PDE with elliptic dissipative terms: critical index for singular initial data, self-similar solutions and analytic regularity, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), 41-46. MR 99k:35081
  • 15. L. Boccardo, A. Dall'Aglio, Th. Gallouet and L. Orsina, Existence and regularity results for some nonlinear parabolic equations, Adv. Math. Sci. Appl. 9 (1999), 1017-1031. MR 2000h:35085
  • 16. H. Brezis and X. Cabré, Some simple nonlinear PDE's without solutions, Bolletino U.M.I. (8) 1-B (1998), 223-262. MR 99j:35001
  • 17. H. Brezis and T. Cazenave, A nonlinear heat equation with singular initial data, J. Anal. Math. 68 (1996), 277-304. MR 97f:35092
  • 18. H. Brezis and A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures et Appl. 62 (1983), 73-97. MR 84g:35093
  • 19. J. Droniou and J.-P. Raymond, Optimal pointwise control of semilinear parabolic equations, Nonlinear Analysis 39 (2000), 135-156. MR 2000i:49007
  • 20. E. Hewitt and K. Stromberg, Real and abstract analysis, Springer, Berlin - Heidelberg - New York, 1965. MR 32:5826
  • 21. O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Transl. Math. Monographs, Providence, R.I., 1968. MR 39:3159a
  • 22. P. Quittner, Global existence for semilinear parabolic problems, Adv. Math. Sci. Appl. 10 (2000), 643-660. MR 2002a:35105
  • 23. P. Quittner and Ph. Souplet, Admissible $L_p$ norms for local existence and for continuation in semilinear parabolic systems are not the same, Proc. Royal Soc. Edinburgh A 131 (2001), 1435-1456. MR 2003a:35098
  • 24. F. Ribaud, Cauchy problem for parabolic semilinear equations with initial data in $H^s_p(\mathbb R^n)$, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 25-30. MR 98c:35079
  • 25. -, Semilinear parabolic equations with distributions as initial data, Discrete and Cont. Dyn. Systems 3 (1997), 305-316. MR 97m:35127
  • 26. L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Pitman Research Notes in Math., #353, Longman Sci. & Tech., Harlow, 1996. MR 98b:35053
  • 27. F. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J. 29 (1980), 79-102. MR 81c:35072
  • 28. Q.S. Zhang and Z. Zhao, Singular solutions of semilinear elliptic and parabolic equations, Math. Ann. 310 (1998), 777-794. MR 99e:35078

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35K55, 35K60, 35K90, 28B05

Retrieve articles in all journals with MSC (2000): 35K55, 35K60, 35K90, 28B05

Additional Information

H. Amann
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr. 190, CH–8057 Zürich, Switzerland

P. Quittner
Affiliation: Institute of Applied Mathematics, Comenius University, SK–84248 Bratislava, Slovakia

Keywords: Nonlinear parabolic systems, weak solutions, measure data, critical exponents
Received by editor(s): August 19, 2002
Published electronically: September 22, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society