Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Hilbert spaces of Dirichlet series and their multipliers

Author: John E. McCarthy
Journal: Trans. Amer. Math. Soc. 356 (2004), 881-893
MSC (2000): Primary 30B50, 46E20
Published electronically: October 9, 2003
MathSciNet review: 1984460
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider various Hilbert spaces of Dirichlet series whose norms are given by weighted $\ell^2$ norms of the Dirichlet coefficients. We describe the multiplier algebras of these spaces. The functions in the multiplier algebra may or may not extend to be analytic on a larger half-plane than the functions in the Hilbert space.

References [Enhancements On Off] (What's this?)

  • 1. Jim Agler and John E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), no. 1, 111–124. MR 1774853,
  • 2. Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, vol. 44, American Mathematical Society, Providence, RI, 2002. MR 1882259
  • 3. Călin-Grigore Ambrozie and Dan Timotin, On an intertwining lifting theorem for certain reproducing kernel Hilbert spaces, Integral Equations Operator Theory 42 (2002), no. 4, 373–384. MR 1885440,
  • 4. Joseph A. Ball, Tavan T. Trent, and Victor Vinnikov, Interpolation and commutant lifting for multipliers on reproducing kernel Hilbert spaces, Operator theory and analysis (Amsterdam, 1997) Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 89–138. MR 1846055
  • 5. F. Bayart.
    Opérateurs de composition sur des espaces de séries de Dirichlet et problèmes d'hypercyclicité simultanée.
    Ph.D. thesis, Université des Sciences et Technologie de Lille, 2002.
  • 6. A.S. Besicovitch.
    Almost periodic functions.
    Cambridge University Press, London, 1932.
  • 7. H. Bohr.
    Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reihen $\Sigma a_n / n^s$.
    Nachr. Akad. Wiss. Göttingen math.-Phys. Kl., pages 441-448, 1913.
  • 8. F. Carlson.
    Contributions á la théorie des séries de Dirichlet, Note I.
    Ark. Mat., 16(18):1-19, 1922.
  • 9. Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, A Hilbert space of Dirichlet series and systems of dilated functions in 𝐿²(0,1), Duke Math. J. 86 (1997), no. 1, 1–37. MR 1427844,
  • 10. P. Lévy.
    Sur les séries dont les termes sont des variables éventuelles indépendentes.
    Studia Math., 3:119-155, 1931.
  • 11. Scott McCullough, Carathéodory interpolation kernels, Integral Equations Operator Theory 15 (1992), no. 1, 43–71. MR 1134687,
  • 12. D. Marshall and C. Sundberg.
    Interpolating sequences for the multipliers of the Dirichlet space.
    Preprint; see$\sim$marshall/preprints/preprints.html, 1994.
  • 13. N. K. Nikol'skii.
    Treatise on the Shift Operator: Spectral Function Theory, volume 273 of Grundlehren der mathematischen Wissenschaften.
    Springer-Verlag, Berlin, 1985.
  • 14. Peter Quiggin, For which reproducing kernel Hilbert spaces is Pick’s theorem true?, Integral Equations Operator Theory 16 (1993), no. 2, 244–266. MR 1205001,
  • 15. David A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. MR 550655
  • 16. E.C. Titchmarsh.
    The theory of functions.
    Oxford University Press, London, 1932.
  • 17. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
  • 18. Andrew T. Tomerlin, Products of Nevanlinna-Pick kernels and operator colligations, Integral Equations Operator Theory 38 (2000), no. 3, 350–356. MR 1797710,

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 30B50, 46E20

Retrieve articles in all journals with MSC (2000): 30B50, 46E20

Additional Information

John E. McCarthy
Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130

Received by editor(s): December 7, 2001
Published electronically: October 9, 2003
Additional Notes: The author was partially supported by National Science Foundation Grant DMS 0070639
Article copyright: © Copyright 2003 by the author