Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Limit theorems for partially hyperbolic systems


Author: Dmitry Dolgopyat
Journal: Trans. Amer. Math. Soc. 356 (2004), 1637-1689
MSC (2000): Primary 37D30; Secondary 60Fxx
DOI: https://doi.org/10.1090/S0002-9947-03-03335-X
Published electronically: September 22, 2003
MathSciNet review: 2034323
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a large class of partially hyperbolic systems containing, among others, affine maps, frame flows on negatively curved manifolds, and mostly contracting diffeomorphisms. If the rate of mixing is sufficiently high, the system satisfies many classical limit theorems of probability theory.


References [Enhancements On Off] (What's this?)

  • 1. Alves J., Bonatti C. & Viana M. SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Inv. Math. 140 (2000) 35--398. MR 2001j:37063b
  • 2. Anosov D. V. Geodesic flows on closed Riemannian manifolds with negative curvature Proc. Steklov Inst. Math. 90 (1967). MR 39:3527
  • 3. Anosov D. V. & Sinai Ya. G. Certain smooth ergodic systems, Uspekhi Mat. Nauk 22 (1967), no. 5, 107-172; English transl., Russian Math. Surveys 22 (1967), no. 5, 103-167. MR 37:370
  • 4. Bakhtin, V. I. Random processes generated by a hyperbolic sequence of mappings. I, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 2, 40-72; English transl., Russian Acad. Sci. Izv. Math. 44 (1995) 247-279.
  • 5. Bakhtin, V. I. On the averaging method in a system with fast hyperbolic motions, Proc. Belorussian Math. Inst. 6 (2000) 23-26.
  • 6. Barreira L. & Schmeling J. Sets of non-typical points have full topological entropy and full Haussdorff dimension, Israel J. Math 116 (2000) 29-70. MR 2002d:37040
  • 7. Bonnatti C.& Viana M. SRB measures for partially hyperbolic systems: mostly contracting case, Israel J. Math 115 (2000) 157-193. MR 2001j:37063a
  • 8. Bowen R. `Equilibrium states and ergodic theory of Anosov diffeomorphisms' Lect. Notes in Math. 470 (1975) Springer New York. MR 56:1364
  • 9. Bowen R. Weak mixing and unique ergodicity on homogeneous spaces Isr. J. Math. 23 (1976) 267-273. MR 53:11016
  • 10. Brezin J. & Shub M. Stable ergodicity in homogeneous spaces Bol. Soc. Brasil. Mat. (N.S.) 28 (1997) 197-210. MR 99a:58103
  • 11. Brin M. Topological transitivity of one class of dynamical systems and flows of frames on manifolds of negative curvature Func. An. & Appl. 9 (1975) 8-16. MR 51:6886
  • 12. Brin M. Topology of group extensions of Anosov systems Math. Notes 18 (1975) 858-864. MR 52:15563
  • 13. Brin M. & Pesin Ya. B. Partially hyperbolic dynamical systems Math. USSR-Izvestiya 8 (1974) 177-218. MR 49:8058
  • 14. Burns K., Pugh C. C. & Wilkinson A. Stable ergodicity and Anosov flows, Topology 39 (2000) 149-159. MR 2000i:37031
  • 15. Burns K. & Wilkinson A. Stable ergodicity of skew products, Ann. Sci. Esc. Norm. Sup. 32 (1999) 859-889. MR 2000g:37030
  • 16. Castro A. Backward inducing and statistical properties of some partially hyperbolic attractors, Israel J. Math. 130 (2002) 29-75.
  • 17. Chernov N. I. Limit theorems and Markov approximations for chaotic dynamical systems Prob. Th., Rel. Fields 101 (1995) 321-363. MR 96m:28016
  • 18. Chernov N. I. & Haskell C. Nonuniformly hyperbolic $K$-systems are Bernoulli Erg. Th. & Dyn. Sys. 16 (1996) 19-44. MR 97k:28031
  • 19. Chernov N. I. & Kleinbock D. Y. Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001), 1-27. MR 2002h:37003
  • 20. Dani S. G. On orbits of endomorphisms of tori and the Schmidt game, Erg. Th. & Dyn. Sys. 8 (1988) 523-529. MR 90b:58145
  • 21. Denker M. The Central Limit Theorem for dynamical systems, Banach Center Publ. 23 Warsaw, Polish Sci. Publ. (1989) 33-62. MR 92d:28007
  • 22. Denker M. Remarks on weak limit laws for fractal sets, In Fractal geometry and stochastics (C. Bandt, S. Graf & M. Zahle editors) Progr. Prob. 37 (1995) Birkhauser, Basel. MR 97k:28032
  • 23. Denker M. & Philipp W. Approximation by Brownian motion for Gibbs measures and flows under a function, Erg. Th. & Dyn. Sys. 4 (1984) 541-552. MR 86g:28025
  • 24. Dolgopyat D. On decay of correlations in Anosov flows, Ann. Math. 147 (1998) 357-390. MR 99g:58073
  • 25. Dolgopyat D. Prevalence of rapid mixing in hyperbolic flows, Erg. Th. & Dyn. Sys. 18 (1998) 1097-1114. MR 2000a:37014
  • 26. Dolgopyat D. On mixing properties of compact group extensions of hyperbolic systems, Israel Math. J. 130 (2002) 157-205.
  • 27. Dolgopyat D. On dynamics of mostly contracting diffeomorphisms, Comm. Math. Phys. 213 (2000) 181-201. MR 2001h:37056
  • 28. Dolgopyat D. On differentiability of SRB states for partially hyperbolic systems, to appear in Inv. Math.
  • 29. Dolgopyat D., Kaloshin V. & Koralov L. Sample path properties of stochastic flows, to appear in Ann. Prob.
  • 30. Eberlein E. & Taqqu M. S. (editors) Dependence in probability and steatistics. A survey of recent results, Progress in prob. and Stat. 11, Birkhauser, Boston, 1986. MR 88b:60006
  • 31. Ellis R. & Perrizo W. Unique ergodicity of flows on homogeneous spaces, Isr. J. Math. 29 (1978) 276-284. MR 57:12774
  • 32. Gordin M. I. On Central Limit Theorem for stationary processes, Doklany AN SSSR 188 (1969) 739-741; English transl., Soviet Math. Dokl. 10 (1969), 1174-1176. MR 40:5012
  • 33. Gordin M. I. Double extensions of dynamical systems and construction of the mixing filtrations, J. Math. Sci. (New York) 99 (2000), 1053-1060. MR 2000e:37003
  • 34. Gordin M. I. Double extensions of dynamical systems and construction of the mixing filtrations-2: quasi-hyperbolic toral automorphisms, J. Math. Sci. (New York) 109 (2002), 2103-2114. MR 2001e:37008
  • 35. Grayson M., Pugh C. C. & Shub M. Stably ergodic diffeomorphisms, Ann. Math. 140 (1994) 295-329. MR 95g:58128
  • 36. Guivarch Y. & Hardy J. Theoremes limites pour une classe de chaines de Markov et applications aux diffeomorphisms d'Anosov, Annales de Inst. H. Poincare (Ser. Prob & Stat) 24 (1988) 73-98. MR 89m:60080
  • 37. Guivarch Y. & Le Borgne S. Methode de martingales et flot geodesique sur une surface de courbure constante negative, preprint.
  • 38. Hall P. & Heyde C. C. Martingale limit theory and its application, Academic Press, New York, 1980. MR 83a:60001
  • 39. Hill R. & Velani S. L. The ergodic theory of shrinking targets, Invent. Math. 119 (1995) 175-198. MR 96e:58088
  • 40. Hirata M. Poisson law for Axiom A diffeomorphisms, Erg. Th. & Dyn. Sys. 13 (1993) 533-556. MR 94m:58137
  • 41. Hirata M. Poisson law for the dynamical systems with self-mixing conditions, In Dynamical systems and chaos, Ed. N. Aoki, K. Shiraiwa & Y. Takahashi, World Scientific, Singapore (1995) v. 1, 87-96. MR 98h:81032
  • 42. Hirata M., Saussol B. & Vaienti S. Statistics of return times: a general framework and new applications, Comm. Math. Phys. 206 (1999) 33-55. MR 2001c:37007
  • 43. Hirsch M., Pugh C. C. & Shub M. Invariant manifolds, Lect. Notes in Math. 583 Springer-Verlag, Berlin, 1977. MR 58:18595
  • 44. Ibragimov I. A. & Linnik Yu. V. Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. MR 48:1287
  • 45. Katok, A. Smooth non-Bernoulli $K$-automorphisms, Invent. Math. 61 (1980) 291-299. MR 84e:58063a, MR 84e:58063b
  • 46. Katok A.& Kononenko A.Cocycle stability for partially hyperbolic systems, Math. Res. Lett. 3 (1996) 191-210. MR 97d:58152
  • 47. Katok A. & Spatzier R. J. First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994) 131-156. MR 96c:58132
  • 48. Katok A. & Strelcyn J.-M. Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math. 1222 Springer, Berlin, 1986. MR 88k:58075
  • 49. Katznelson Y. Ergodic automorphisms of $\mathbb{T}^n$ are Bernoulli shifts, Israel J. Math. 10 (1971) 186-195. MR 45:3672
  • 50. Kifer Yu. Large deviations in dynamical systems and stochastic processes, Transactions AMS 321 (1990) 505-524. MR 91e:60091
  • 51. Kifer Yu. Averaging in dynamical systems and large deviations, Inv. Math. 110 (1992) 337-370. MR 93m:60118
  • 52. Kifer Yu. Limit theorems in averaging for dynamical systems, Erg. Th. & Dyn. Sys. 15 (1995) 1143-1172. MR 97c:58087
  • 53. Kleinbock D. Y. & Margulis G. A. Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Amer. Math. Soc. Transl. 171 (1996) 141-172. MR 96k:22022
  • 54. Kleinbock D. Y. & Margulis G. A. Logarithm laws for flows on homogeneous spaces, Inv. Math. 138 (1999) 451-494. MR 2001i:37046
  • 55. Krzyzewski K. On convergence of certain series related to Axiom A diffeomorphisms, Bull. Acad. Polon. Ser. Math. 30 (1982) 25-30. MR 84b:58086
  • 56. Le Borgne S. Limit theprems for non-hyperbolic automorphisms of the torus, Israel J. Math. 109 (1999) 61-73. MR 2000a:37001
  • 57. Le Borgne S. Principes d'invariance pour les flots diagonaux sur ${SL}(d,\mathbb{R})/\operatorname{SL}(d,\mathbb{Z}),$ Ann. Inst. H. Poincare Probab. Stat. 38 (2002), 581-612. MR 2003c:37008
  • 58. Liverani C. Central limit theorem for deterministic systems, in International conference on dynamical systems (Eds. F. Ledrappier, J. Lewowics & S. Newhouse), Pitman Res. Notes 363 (1996) 56-75. MR 98k:28025
  • 59. Liverani C. On Contact Anosov flows, preprint.
  • 60. Margulis G. A. Certain measures that are connected with U-flows on compact manifolds, Func. Anal. Appl. 4 (1970) 62-76. MR 42:7865
  • 61. Moore C. C. Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154-178. MR 33:1409
  • 62. Nitica V. & Torok A. An open dense set of stably ergodic diffeomorphisms in a neighbourhood of a non-ergodic one, Topology 40 (2001), 259-278. MR 2001m:37058
  • 63. Ornstein D. & Weiss B. On Bernoulli nature of systems with some hyperbolic structure, Erg. Th. & Dyn. Sys. 18 (1998) 441-456. MR 99c:58096
  • 64. Parry W. & Pollicott M. Zeta Functions and Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque v. 187-188 (1990). MR 92f:58141
  • 65. Pene F. Averaging method for differential equations perturbed by dynamical systems, ESAIM Probab. Stat. 6 (2002), 33-88 (electronic). MR 2003i:34118
  • 66. Pesin Ya. B. Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR 40 (1976) 1332-1379; English tranl., Math. USSR Izv. 10 (1976), 1261-1305. MR 56:16690
  • 67. Pesin Ya. B. Characteristic Lyapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977) 55-112; English transl., Russian Math. Surveys 32 (1977), no. 4, 55-114. MR 57:6687
  • 68. Pesin Ya. B. General theory of smooth hyperbolic dynamical systems, In Encyclopedia Math. Sci., Dynamical Systems-2. Ed. Ya. G. Sinai, Springer-Verlag, Berlin, 1989. MR 91i:58079
  • 69. Pesin Ya. B. & Sinai Ya. G. Gibbs measures for partially hyperbolic attractors, Erg. Th. & Dyn. Sys. 2 (1982) 417-438. MR 85f:58071
  • 70. Philipp W. Some metric theorems in number theory, Pacific J. Math 20 (1967) 109-127. MR 34:5755
  • 71. Philipp W. & Stout W. Almost sure invariance principles for partial sums of weakly dependent random variables, Mem. AMS 161 (1975). MR 55:6570
  • 72. Pitskel B. S. Poisson Limit Law for Markov chains, Erg. Th. & Dyn. Sys. 11 (1991) 501-513. MR 92j:60081
  • 73. Pugh C. C.& Shub M Ergodicity of Anosov actions, Inv. Math 15 (1972) 1-23. MR 45:4456
  • 74. Pugh C. C. & Shub M. Ergodic attractors, Trans. AMS 312 (1989) 1-54. MR 90h:58057
  • 75. Pugh C. C. & Shub M.Stably ergodic dynamical systems and partial hyperbolicity, J. Complexity 13 (1997) 125-179. MR 98e:58110
  • 76. Pugh C. C. & Shub M. Stable ergodicity and Julienne quasi-conformality, J. European Math. Soc. 2 (2000) 1-52. MR 2003j:37046
  • 77. Pugh C. C., Shub M. & Wilkinson A. Hölder foliations, Duke Math. J. 86 (1997) 517-546. MR 97m:58155
  • 78. Ratner M. The central limit theorem for geodesic flows on n-dimensional manifolds of negative curvature, Israel J. Math. 15 (1973) 181-197. MR 48:11446
  • 79. Sevastjanov B. A. A Poisson Limit Law in a scheme of sums of dependant random variables, Teor. Ver., Primenen. 17 (1972) 733-738; English transl. in Theory Probab. Appl. 17 (1972). MR 46:10041
  • 80. Shub M. & Wilkinson A. Pathological foliations and removable zero exponents, Inv. Math. 139 (2000) 495-508. MR 2001c:37030
  • 81. Sinai Ya. G. Dynamic systems with countably-multiple Lebesgue spectrum. II, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966) 15-68; English transl., Amer. Math. Soc. Transl. (2) 68 (1968), 34-88. MR 33:5847
  • 82. Sinai Ya. G. Markov partitions and U-diffeomorphisms, Funkts. Anal. i Prilozhen. 2 (1968) no. 1 64-89; English transl. in Funct. Anal. Appl. 2 (1968). MR 38:1361
  • 83. Sinai Ya. G. Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972) 21-64; English transl., Russian Math. Surveys 27 (1972), no. 4, 21-70. MR 53:3265
  • 84. Sinai Ya. G. Stochasticity of dynamical systems, Nonlinear Waves (Materials All-Union School, Gorki, 1977; A. V. Gaponov-Grekhov, editor), ``Nauka'', Moscow, 1979, pp. 192-212; English transl., Selecta Math. Sovietica 1 (1981), 101-119. MR 83e:58058
  • 85. Starkov A. N. New progress in the theory of homogeneous flows, Russian Math. Surveys 52 (1997) 721-818. MR 98k:22047
  • 86. Stroock D. W. & Varadhan S. Multidimensional diffusion processes, (1979) Springer, Berlin-New York. MR 91f:60108
  • 87. Sullivan D. Disjoint spheres, approximation by imaginary quadratic numbers, and the logarithm law for geodesics, Acta Math. 149 (1982) 215-237. MR 84j:58097
  • 88. Viana M. Stochastic dynamics of deterministic systems, Lecture Notes XXI Bras. Math. Colloq. IMPA, Rio de Janeiro, 1997.
  • 89. Viana M. Multidimensional nonhyperbolic attractors, Publ. IHES 85 (1997), 63-96. MR 98j:58073
  • 90. Wilkinson A. Stable ergodicity of the time-one map of a geodesic flow, Erg. Th. & Dyn. Sys. 18 (1998) 1545-1587. MR 99m:58129
  • 91. Young L.-S. Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. 147 (1998) 585-650. MR 99h:58140
  • 92. Young L.-S. Recurrence times and rates of mixing, Israel J. Math. 110 (1999) 153-188. MR 2001j:37062

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37D30, 60Fxx

Retrieve articles in all journals with MSC (2000): 37D30, 60Fxx


Additional Information

Dmitry Dolgopyat
Affiliation: Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742
Email: dmitry@math.umd.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03335-X
Keywords: Partial hyperbolicity, central limit theorem, Gibbs measure, absolute continuity
Received by editor(s): April 17, 2002
Received by editor(s) in revised form: March 19, 2003
Published electronically: September 22, 2003
Additional Notes: This work was partly supported by an Elisabeth Proctor Fellowship at Princeton, a Miller Fellowship at Berkeley, and a Sloan Fellowship at PennState
Article copyright: © Copyright 2003 by the author

American Mathematical Society