Random gaps under CH

Author:
James Hirschorn

Journal:
Trans. Amer. Math. Soc. **356** (2004), 1281-1290

MSC (2000):
Primary 03E05; Secondary 03E40, 03E50, 28E15

DOI:
https://doi.org/10.1090/S0002-9947-03-03380-4

Published electronically:
November 25, 2003

MathSciNet review:
2034309

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if the Continuum Hypothesis is true, then one random real always produces a destructible gap.

**[AT97]**Uri Abraham and Stevo Todorcevic,*Partition properties of compatible with*CH, Fund. Math.**152**(1997), no. 2, 165-181. MR**98b:03064****[Dow95]**Alan Dow,*More set-theory for topologists*, Topology Appl.**64**(1995), no. 3, 243-300. MR**97a:54005****[Hau36]**Felix Hausdorff,*Summen von Mengen*, Fund. Math.**26**(1936), 241-255.**[Hir00a]**James Hirschorn,*Random trees under*CH, preprint, 2000.**[Hir00b]**James Hirschorn,*Towers of measurable functions*, Fund. Math.**164**(2000), no. 2, 165-192. MR**2002i:03056****[Hir01]**James Hirschorn,*Summable gaps*, Ann. Pure Appl. Logic**120**(2003), no. 1-3, 1-63.**[Hir03]**James Hirschorn,*Random gaps*, preprint, October 2003.**[Jec97]**Thomas Jech,*Set theory*, second ed., Springer-Verlag, Berlin, 1997. MR**99b:03061****[Kan94]**Akihiro Kanamori,*The higher infinite. Large cardinals in the set theory from their beginnings*, Springer-Verlag, Berlin, 1994. MR**96k:03125****[Kun76a]**Kenneth Kunen,*gaps under*MA, handwritten note, August 1976.**[Kun76b]**-,*Some points in*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no. 3, 385-398. MR**55:106****[Lav79]**Richard Laver,*Linear orders in under eventual dominance*, Logic Colloquium '78 (Mons, 1978), North-Holland, Amsterdam, 1979, pp. 299-302. MR**81e:03051****[Sch93]**Marion Scheepers,*Gaps in*, Set theory of the reals (Ramat Gan, 1991), Bar-Ilan Univ., Ramat Gan, 1993, pp. 439-561. MR**95a:03061****[Sol71]**Robert M. Solovay,*Real-valued measurable cardinals*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 397-428. MR**45:55****[TF95]**Stevo Todorcevic and Ilijas Farah,*Some applications of the method of forcing*, Yenisei, Moscow, 1995. MR**99f:03001****[Tod89]**Stevo Todorcevic,*Partition problems in topology*, American Mathematical Society, Providence, RI, 1989. MR**90d:04001****[Tod00]**-,*A dichotomy for -ideals of countable sets*, Fund. Math.**166**(2000), no. 3, 251-267. MR**2001k:03111****[Woo84]**W. Hugh Woodin,*Discontinuous homomorphisms of and set theory*, Ph.D. thesis, University of California, Berkeley, 1984.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
03E05,
03E40,
03E50,
28E15

Retrieve articles in all journals with MSC (2000): 03E05, 03E40, 03E50, 28E15

Additional Information

**James Hirschorn**

Affiliation:
Department of Mathematics, University of Helsinki, Helsinki, Finland

Address at time of publication:
Centre de Recerca Matemàtica, Apartat 50, E-08193 Bellaterra, Spain

Email:
jhirschorn@crm.es, James.Hirschorn@logic.univie.ac.at

DOI:
https://doi.org/10.1090/S0002-9947-03-03380-4

Keywords:
Gap,
destructible gap,
random real,
Continuum Hypothesis

Received by editor(s):
October 1, 2001

Published electronically:
November 25, 2003

Article copyright:
© Copyright 2003
American Mathematical Society