Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Cohomology operations for Lie algebras


Authors: Grant Cairns and Barry Jessup
Journal: Trans. Amer. Math. Soc. 356 (2004), 1569-1583
MSC (2000): Primary 17B56, 55P62
DOI: https://doi.org/10.1090/S0002-9947-03-03392-0
Published electronically: November 4, 2003
MathSciNet review: 2034319
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $L$ is a Lie algebra over $\mathbb{R}$ and $Z$its centre, the natural inclusion $Z\hookrightarrow (L^{*})^{*}$ extends to a representation $i^{*}\,:\,\Lambda Z\to \operatorname{End} H^{*}(L,\mathbb{R})$ of the exterior algebra of $Z$ in the cohomology of $L$. We begin a study of this representation by examining its Poincaré duality properties, its associated higher cohomology operations and its relevance to the toral rank conjecture. In particular, by using harmonic forms we show that the higher operations presented by Goresky, Kottwitz and MacPherson (1998) form a subalgebra of $\operatorname{End} H^{*}(L,\mathbb{R})$, and that they can be assembled to yield an explicit Hirsch-Brown model for the Borel construction associated to $0\to Z\to L\to L/Z\to 0$.


References [Enhancements On Off] (What's this?)

  • 1. C. Allday and V. Puppe, On a conjecture of Goresky, Kottwitz and MacPherson, Canad. J. Math. 51 (1) (1999), 3-9. MR 2000e:18008
  • 2. G.F. Armstrong and S. Sigg, On the cohomology of a class of nilpotent Lie algebras, Bull. Austral. Math. Soc. 54 (3) (1996), 517-527. MR 97k:17030
  • 3. D. Burde, Affine cohomology classes for filiform Lie algebras, Crystallographic groups and their generalizations, Contemp. Math. Vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 159-170. MR 2001i:17026
  • 4. G. Cairns and B. Jessup, New bounds on the Betti numbers of nilpotent Lie algebras, Comm. Algebra 25 (2) (1997), 415-430. MR 98a:17032
  • 5. G. Cairns, B. Jessup and J. Pitkethly, On the Betti numbers of nilpotent Lie algebras of small dimension, Integrable systems and foliations, Birkhäuser, Boston, MA, 1997, pp. 19-31. MR 98c:17018
  • 6. C.W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, John Wiley & Sons, New York-London, 1962. MR 26:2519
  • 7. Ch. Deninger and W. Singhof, On the cohomology of nilpotent Lie algebras, Bull. Soc. Math. France 116 (1988), 3-14. MR 90c:17023
  • 8. W. Greub, Multilinear algebra, 2nd edition, Springer-Verlag, New York-Heidelberg, 1978. MR 80c:15017
  • 9. M. Goresky, R. Kottwitz and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1) (1998), 25-83. MR 99c:55009
  • 10. S. Halperin, Rational homotopy and torus actions, Aspects of Topology (eds. I. M. James and E. H. Kronheimer), London Math. Soc. Lecture Notes Ser. 93, 1985. MR 87d:55001
  • 11. G. Hirsch, Certaines opérations homologiques et la cohomologie des espaces fibrés, Colloque de topologie algébrique, Lou vain, 1956, 1957, pp. 167-190. Georges Thone, Liège; Masson & Cie, Paris. MR 19:973c
  • 12. -, Sur certaines opérations dans l'homologie des espaces de Riemann, Bull. Soc. Math. Belg. 9 (1957), 115-139. MR 22:7141
  • 13. A. LeBel, Operators in the cohomology of nilpotent Lie algebras, Master's Thesis, University of Ottawa, 2001.
  • 14. J. McCleary, User's guide to spectral sequences, Publish or Perish, Inc., Wilmington, 1985. MR 87f:55014
  • 15. L.J. Santharoubane, Cohomology of Heisenberg Lie algebras, Proc. Amer. Math. Soc. 87 (1) (1983), 23-28. MR 84b:17010
  • 16. C. Seeley, 7-dimensional nilpotent Lie algebras, Trans. Amer. Math. Soc. 335 (1993), 479-496. MR 93d:17015
  • 17. S. Sigg, Laplacian and homology of free two-step nilpotent Lie algebras, J. Algebra 185 (1) (1996), 144-161. MR 97i:17014
  • 18. P. Tirao, A refinement of the toral rank conjecture for $2$-step nilpotent Lie algebras, Proc. Amer. Math. Soc. 128 (10) (2000), 2875-2878. MR 2000m:17026
  • 19. -, On the homology of graded Lie algebras, J. Pure Appl. Algebra 156 (2-3) (2001), 357-366. MR 2001m:17026
  • 20. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York, 1983. MR 84k:58001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B56, 55P62

Retrieve articles in all journals with MSC (2000): 17B56, 55P62


Additional Information

Grant Cairns
Affiliation: Department of Mathematics, La Trobe University, Melbourne, Australia 3086
Email: G.Cairns@latrobe.edu.au

Barry Jessup
Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5
Email: bjessup@uottawa.ca

DOI: https://doi.org/10.1090/S0002-9947-03-03392-0
Keywords: Lie algebra, cohomology, representation, Hirsch-Brown model, Borel construction, toral rank, harmonic form
Received by editor(s): December 4, 2002
Received by editor(s) in revised form: February 26, 2003
Published electronically: November 4, 2003
Additional Notes: This research was supported in part by NSERC and the ARC
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society