Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Asymptotic behavior of the solutions of linear and quasilinear elliptic equations on $\mathbb{R} ^{N}$

Author: Patrick J. Rabier
Journal: Trans. Amer. Math. Soc. 356 (2004), 1889-1907
MSC (2000): Primary 35P05, 35Q40, 47F05
Published electronically: October 6, 2003
MathSciNet review: 2031045
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the relationship between the decay at infinity of the right-hand side $f$ and solutions $u$ of an equation $Lu=f$ when $L$ is a second order elliptic operator on $\mathbb{R} ^{N}.$ It is shown that when $L$is Fredholm, $u$ inherits the type of decay of $f$ (for instance, exponential, or power-like). In particular, the generalized eigenfunctions associated with all the Fredholm eigenvalues of $L,$ isolated or not, decay exponentially. No use is made of spectral theory. The result is next extended when $L$ is replaced by a Fredholm quasilinear operator. Various generalizations to other unbounded domains, higher order operators or elliptic systems are possible and briefly alluded to, but not discussed in detail.

References [Enhancements On Off] (What's this?)

  • 1. Agmon, S., Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $ N $-body Schrödinger operators, Mathematical Notes, Vol. 29, Princeton University Press, Princeton (1982). MR 85f:35019
  • 2. Aguilar, J. and Combes, J. M., A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys. 22 (1971), 269-279. MR 49:10287
  • 3. Alinhac, S. and Baouendi, M. S., Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential inequalities, Amer. J. Math. 102 (1980), 179-217. MR 81e:35003
  • 4. Angenent, S., Constructions with analytic semigroups and abstract exponential decay results for eigenfunctions, Progress in Nonlinear Differential Equations and Their Applications, Vol. 35, Birkhäuser, Basel (1999), 11-27. MR 2000h:47006
  • 5. Anane, A., Chakrone, O., El Allali, Z. and Hadi, I., A unique continuation property for linear elliptic systems and nonresonance problems, Electron. J. Differential Equations 46 (2001) (electronic). MR 2002j:35090
  • 6. Bellini-Morante, A., Applied Semigroups and Evolution Equations, Oxford Mathematical Monographs, Oxford (1979). MR 82f:47001
  • 7. Berestycki, H. and Lions, P.-L., Nonlinear scalar field equations, Arch. Rat. Mech. Anal. 82 (1983), 313-376. MR 84h:35054a
  • 8. Browder, F. E., On the spectral theory of elliptic differential operators I, Math. Ann. 142 (1960/61), 22-130. MR 35:804
  • 9. Caffarelli, L. A. and Friedman, A., Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations. J. Differ. Eqns. 60 (1985), 420-433. MR 87e:35006
  • 10. Chaljub, A. and Volkmann, P., Existence of ground states and exponential decay for semilinear elliptic equations in $\mathbb{R} ^{N}$, J. Differ. Eqns. 76 (1988), 374-390. MR 90c:35076
  • 11. Coti Zelati, V. and Rabinowitz, P. H., Homoclinic type solutions for a semilinear elliptic PDE on $\mathbb{R} ^{N}$, Comm. Pure Appl. Math. 45 (1992), 1217-1269. MR 93k:35087
  • 12. Dautray, R. and Lions, J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, Springer-Verlag, Berlin (2000).
  • 13. De Carli, L., Unique continuation for a class of higher order elliptic operators, Pacific J. Math. 179 (1997), 1-10. MR 98d:35046
  • 14. De Carli, L., Unique continuation for elliptic operators with non-multiple characteristics, Israel J. Math. 118 (2000), 15-27. MR 2001f:35074
  • 15. Dehman, B. and Robbiano, L., La propriété du prolongement unique pour un système elliptique: Le système de Lamé, J. Math. Pures Appl. 72 (1993), 475-492. MR 94h:35051
  • 16. de Figueiredo, D. G. and Gossez, J.-P., Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differ. Eqns. 17 (1992), 339-346. MR 93b:35098
  • 17. Garofalo, N. and Lin, F. H., Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math. 40 (1987), 347-366. MR 88j:35046
  • 18. Glazman, I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Israel Prog. Sci. Trans., Jerusalem (1966). MR 32:8210
  • 19. Gossez, J.-P. and Loulit, A., A note on two notions of unique continuation, Bull. Soc. Math. Belg., Ser. B 45 (1993), 257-268. MR 96k:35034
  • 20. Hislop, P. D., Exponential decay of two-body eigenfunctions: a review, Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), 265-288 (electronic), Electron. J. Differ. Equ. Conf., 4, Southwest Texas State Univ., San Marcos, TX, 2000. MR 2001j:81247
  • 21. Hislop, P. D. and Sigal, I. M., Introduction to Spectral Theory, Springer-Verlag, Berlin (1996). MR 98h:47003
  • 22. Kato, T., Perturbation theory for linear operators. Springer-Verlag, New York, (1980). MR 96a:47025 (reprint)
  • 23. Kryszewski, W. and Szulkin, A., Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Diff. Eqns. 3 (1998), 441-472. MR 2001g:58021
  • 24. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I and II, Springer-Verlag, Berlin (1996). MR 58:17766; MR 81c:46001 (1st eds.)
  • 25. Lions, P.-L., Solutions of the Hartree-Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987), 33-97. MR 88e:35170
  • 26. Rabier, P. J., Invariance of the $\Phi _{0}$-spectrum and Sobolev regularity for second order linear elliptic problems on $\mathbb{R} ^{N}$in ``Applicable Mathematics in the Golden Age'', J. C. Misra Ed., Narosa Publishing House, New Dehli (2003), 1-31.
  • 27. Rabier, P. J. and Stuart, C. A., Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, J. Diff. Eqns. 165 (2000), 199-234. MR 2001f:35139
  • 28. Rabier, P. J. and Stuart, C. A., Fredholm properties of Schrödinger operators in $L^{p}(\mathbb{R} ^{N})$, Diff. Int. Eqns. 13 (2000), 1429-1444. MR 2001m:47103
  • 29. Rabier, P. J. and Stuart, C. A., Fredholm and properness properties of quasilinear elliptic operators on $\mathbb{R} ^{N}$, Math. Nachr. 231 (2001), 129-168. MR 2003c:35026
  • 30. Robbiano, L., Dimension des zéros d'une solution faible d'un opérateur elliptique, J. Math. Pures Appl. 67 (1988), 339-357. MR 90c:35059
  • 31. Rother, W., Nonlinear scalar field equations, Differ. Integral Eqns. 5 (1992), 777-792. MR 93e:35030
  • 32. Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982), 447-526. MR 86b:81001a
  • 33. Strauss, W.A., Existence of solitary waves in higher dimension, Comm. Math. Phys. 55 (1977), 149-162. MR 56:12616
  • 34. Troestler, C. and Willem, M., Nontrivial solution of a semilinear Schrödinger equation, Comm. PDEs 21 (1996), 1431-1449. MR 98i:35034
  • 35. Wang, W., Carleman inequalities and unique continuation for higher-order elliptic differential operators, Duke Math. J. 74 (1994), 107-128. MR 95j:35078

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35P05, 35Q40, 47F05

Retrieve articles in all journals with MSC (2000): 35P05, 35Q40, 47F05

Additional Information

Patrick J. Rabier
Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Keywords: Fredholm operator, unique continuation, eigenvalue, generalized eigenfunction, exponential decay.
Received by editor(s): September 4, 2001
Received by editor(s) in revised form: August 24, 2002
Published electronically: October 6, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society