Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Automorphic forms and differentiability properties

Author: Fernando Chamizo
Journal: Trans. Amer. Math. Soc. 356 (2004), 1909-1935
MSC (2000): Primary 42A16, 11F12, 28A80
Published electronically: July 24, 2003
MathSciNet review: 2031046
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider Fourier series given by a type of fractional integral of automorphic forms, and we study their local and global properties, especially differentiability and fractal dimension of the graph of their real and imaginary parts. In this way we can construct fractal objects and continuous non-differentiable functions associated with elliptic curves and theta functions.

References [Enhancements On Off] (What's this?)

  • 1. H. Brézis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983. MR 85a:46001
  • 2. P. I. Butzer and E. I. Stark, ``Riemann's example'' of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym, Bull. Soc. Math. Belg. 38 (1986), 45-73. MR 88d:01007
  • 3. F. Chamizo and A. Córdoba, Differentiablity and dimension of some fractal Fourier series, Adv. in Math. 142 (1999), 335-354. MR 2000d:42002
  • 4. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, 1986. MR 88d:28001
  • 5. J. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), 586-601.
  • 6. J. Gerver, The differentiability of the Riemann function at certain rational multiples of $\pi $, Amer. J. Math. 92 (1970), 33-55. MR 42:434
  • 7. G. H. Hardy, Weierstrass's non-differentiable functions, Trans. Amer. Math. Soc. 17 (1916), 301-325.
  • 8. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, fifth edition, Oxford University Press, 1979. MR 81i:10002
  • 9. D. Husemöller, Elliptic curves, Graduate Texts in Mathematics, vol. 111, Springer-Verlag, 1987. MR 88h:11039
  • 10. H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 98e:11051
  • 11. W. C. W. Li, Number theory with applications, Series on University Mathematics, vol. 7, World Scientific, Singapore, 1996. MR 98b:11001
  • 12. M. V. Melián and D. Pestana, Geodesic excursions into cusps in finite-volume hyperbolic manifolds, Michigan Math. J. 40 (1993), 77-93. MR 94d:53067
  • 13. W. Rudin, Real and complex analysis, third edition, McGraw-Hill, New York, 1987. MR 35:1420 (1st ed.); MR 88k:00002
  • 14. J.-P. Serre and H. Stark, Modular forms of weight $1/2$, Lecture Notes in Mathematics 627, Springer-Verlag, 1977, 29-68. MR 57:12400
  • 15. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1971. MR 47:3318
  • 16. K. Weierstrass, Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des Letzteren einen bestimmten Differentialquotienten besitzen (1872); English translation included in: Classics on Fractals (Ed., G.A. Edgar), Addison-Wesley Publishing Company, 1993.
  • 17. A. Zygmund, Trigonometric series I, II, second edition, latest reprint, Cambridge University Press, 1990. MR 58:29731, etc.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42A16, 11F12, 28A80

Retrieve articles in all journals with MSC (2000): 42A16, 11F12, 28A80

Additional Information

Fernando Chamizo
Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain

Received by editor(s): May 14, 2002
Received by editor(s) in revised form: March 27, 2003
Published electronically: July 24, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society