Semilattices of finitely generated ideals of exchange rings with finite stable rank

Author:
F. Wehrung

Journal:
Trans. Amer. Math. Soc. **356** (2004), 1957-1970

MSC (2000):
Primary 06A12, 20M14, 06B10; Secondary 19K14

Published electronically:
October 28, 2003

MathSciNet review:
2031048

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find a distributive -semilattice of size that is not isomorphic to the maximal semilattice quotient of any Riesz monoid endowed with an order-unit of finite stable rank. We thus obtain solutions to various open problems in ring theory and in lattice theory. In particular:

- --
- There is no exchange ring (thus, no von Neumann regular ring and no C*-algebra of real rank zero) with finite stable rank whose semilattice of finitely generated, idempotent-generated two-sided ideals is isomorphic to .
- --
- There is no locally finite, modular lattice whose semilattice of finitely generated congruences is isomorphic to .

**1.**K. V. Adaricheva and V. A. Gorbunov,*On lower bounded lattices*, Algebra Universalis**46**(2001), no. 1-2, 203–213. The Viktor Aleksandrovich Gorbunov memorial issue. MR**1835794**, 10.1007/PL00000337**2.**Pere Ara,*Stability properties of exchange rings*, International Symposium on Ring Theory (Kyongju, 1999) Trends Math., Birkhäuser Boston, Boston, MA, 2001, pp. 23–42. MR**1851191****3.**P. Ara, K. R. Goodearl, K. C. O’Meara, and E. Pardo,*Separative cancellation for projective modules over exchange rings*, Israel J. Math.**105**(1998), 105–137. MR**1639739**, 10.1007/BF02780325**4.**G.M. Bergman,*Von Neumann regular rings with tailor-made ideal lattices*, Unpublished note (26 October 1986).**5.**Alan Day,*Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices*, Canad. J. Math.**31**(1979), no. 1, 69–78. MR**518707**, 10.4153/CJM-1979-008-x**6.**Edward G. Effros, David E. Handelman, and Chao Liang Shen,*Dimension groups and their affine representations*, Amer. J. Math.**102**(1980), no. 2, 385–407. MR**564479**, 10.2307/2374244**7.**Ralph Freese, Jaroslav Ježek, and J. B. Nation,*Free lattices*, Mathematical Surveys and Monographs, vol. 42, American Mathematical Society, Providence, RI, 1995. MR**1319815****8.**K. R. Goodearl,*von Neumann regular rings*, 2nd ed., Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991. MR**1150975****9.**K. R. Goodearl,*Partially ordered abelian groups with interpolation*, Mathematical Surveys and Monographs, vol. 20, American Mathematical Society, Providence, RI, 1986. MR**845783****10.**K. R. Goodearl and D. E. Handelman,*Tensor products of dimension groups and 𝐾₀ of unit-regular rings*, Canad. J. Math.**38**(1986), no. 3, 633–658. MR**845669**, 10.4153/CJM-1986-032-0**11.**K. R. Goodearl and F. Wehrung,*Representations of distributive semilattices in ideal lattices of various algebraic structures*, Algebra Universalis**45**(2001), no. 1, 71–102. MR**1809858**, 10.1007/s000120050203**12.**George Grätzer,*General lattice theory*, 2nd ed., Birkhäuser Verlag, Basel, 1998. New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung and R. Wille. MR**1670580****13.**George Grätzer, Harry Lakser, and Friedrich Wehrung,*Congruence amalgamation of lattices*, Acta Sci. Math. (Szeged)**66**(2000), no. 1-2, 3–22. MR**1768850****14.**G. Grätzer and F. Wehrung,*On the number of join-irreducibles in a congruence representation of a finite distributive lattice*, Algebra Universalis**49**(2003), 165-178.**15.**Bjarni Jónsson and James E. Kiefer,*Finite sublattices of a free lattice*, Canad. J. Math.**14**(1962), 487–497. MR**0137667****16.**Céline Moreira Dos Santos,*A refinement monoid whose maximal antisymmetric quotient is not a refinement monoid*, Semigroup Forum**65**(2002), no. 2, 249–263. MR**1911728**, 10.1007/s002330010104**17.**E. Pardo,*Monoides de refinament i anells d'intercanvi*, Ph.D. Thesis, Universitat Autònoma de Barcelona, 1995.**18.**P. Ruzicka,*A distributive semilattice not isomorphic to the maximal semilattice quotient of the positive cone of any dimension group*, J. Algebra**268**, no. 1 (2003), 290-300.**19.**J. Tuma and F. Wehrung,*Liftings of diagrams of semilattices by diagrams of dimension groups*, Proc. London Math. Soc.**87**, no. 3 (2003), 1-28.**20.**-,*A survey of recent results on congruence lattices of lattices*, Algebra Universalis**48**, no. 4 (2002), 439-471.**21.**Friedrich Wehrung,*Non-measurability properties of interpolation vector spaces*, Israel J. Math.**103**(1998), 177–206. MR**1613568**, 10.1007/BF02762273**22.**F. Wehrung,*The dimension monoid of a lattice*, Algebra Universalis**40**(1998), no. 3, 247–411. MR**1668068**, 10.1007/s000120050091**23.**Friedrich Wehrung,*A uniform refinement property for congruence lattices*, Proc. Amer. Math. Soc.**127**(1999), no. 2, 363–370. MR**1468207**, 10.1090/S0002-9939-99-04558-X**24.**Friedrich Wehrung,*Representation of algebraic distributive lattices with ℵ₁ compact elements as ideal lattices of regular rings*, Publ. Mat.**44**(2000), no. 2, 419–435. MR**1800815**, 10.5565/PUBLMAT_44200_03**25.**Friedrich Wehrung,*From join-irreducibles to dimension theory for lattices with chain conditions*, J. Algebra Appl.**1**(2002), no. 2, 215–242. MR**1913085**, 10.1142/S0219498802000148**26.**-,*Forcing extensions of partial lattices*, J. Algebra**262**, no. 1 (2003), 127-193.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
06A12,
20M14,
06B10,
19K14

Retrieve articles in all journals with MSC (2000): 06A12, 20M14, 06B10, 19K14

Additional Information

**F. Wehrung**

Affiliation:
Département de Mathématiques, CNRS, UMR 6139, Université de Caen, Campus II, B.P. 5186, 14032 Caen Cedex, France

Email:
wehrung@math.unicaen.fr

DOI:
https://doi.org/10.1090/S0002-9947-03-03369-5

Keywords:
Semilattice,
distributive,
monoid,
refinement,
ideal,
stable rank,
strongly separative,
exchange ring,
lattice,
congruence

Received by editor(s):
January 3, 2003

Received by editor(s) in revised form:
April 2, 2003

Published electronically:
October 28, 2003

Article copyright:
© Copyright 2003
American Mathematical Society