Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Varying the time-frequency lattice of Gabor frames


Authors: Hans G. Feichtinger and Norbert Kaiblinger
Journal: Trans. Amer. Math. Soc. 356 (2004), 2001-2023
MSC (2000): Primary 42C15; Secondary 47B38, 81R30, 94A12
DOI: https://doi.org/10.1090/S0002-9947-03-03377-4
Published electronically: November 12, 2003
MathSciNet review: 2031050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Gabor or Weyl-Heisenberg frame for $L^2(\mathbb{R}^d)$is generated by time-frequency shifts of a square-integrable function, the Gabor atom, along a time-frequency lattice. The dual frame is again a Gabor frame, generated by the dual atom. In general, Gabor frames are not stable under a perturbation of the lattice constants; that is, even for arbitrarily small changes of the parameters the frame property can be lost.

In contrast, as a main result we show that this kind of stability does hold for Gabor frames generated by a Gabor atom from the modulation space $M^1(\mathbb{R}^d)$, which is a dense subspace of $L^2(\mathbb{R}^d)$. Moreover, in this case the dual atom depends continuously on the lattice constants. In fact, we prove these results for more general weighted modulation spaces. As a consequence, we obtain for Gabor atoms from the Schwartz class that the continuous dependence of the dual atom holds even in the Schwartz topology. Also, we complement these main results by corresponding statements for Gabor Riesz sequences and their biorthogonal system.


References [Enhancements On Off] (What's this?)

  • 1. P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl. 3 (1997), no. 5, 543-557. MR 98j:47028
  • 2. P. G. Casazza, O. Christensen, and A. J. E. M. Janssen, Weyl-Heisenberg frames, translation invariant systems and the Walnut representation, J. Funct. Anal. 180 (2001), no. 1, 85-147. MR 2002b:42042
  • 3. P. G. Casazza, O. Christensen, and M. C. Lammers, Perturbations of Weyl-Heisenberg frames, Hokkaido Math. J. 31 (2002), no. 3, 539-553. MR 2003h:42048
  • 4. O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1217-1220. MR 95e:46024
  • 5. -, Moment problems and stability results for frames with applications to irregular sampling and Gabor frames, Appl. Comput. Harmon. Anal. 3 (1996), no. 1, 82-86. MR 97f:44007
  • 6. -, Perturbation of frames and applications to Gabor frames, in [19], pp. 193-209. MR 98j:42017
  • 7. -, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. (N.S.) 38 (2001), no. 3, 273-291. MR 2002c:42040
  • 8. O. Christensen and C. Heil, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997), 33-47. MR 98m:42061
  • 9. O. Christensen, C. Lennard, and C. Lewis, Perturbation of frames for a subspace of a Hilbert space, Rocky Mountain J. Math. 30 (2000), no. 4, 1237-1249. MR 2002b:42043
  • 10. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992. MR 93e:42045
  • 11. I. Daubechies, H. J. Landau, and Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 1 (1995), no. 4, 437-478. MR 96i:42021
  • 12. S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 160-173. MR 96e:42030
  • 13. H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), no. 4, 269-289. MR 83a:43002
  • 14. H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), no. 2, 307-340. MR 91g:43011
  • 15. -, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2, 464-495. MR 98k:42041
  • 16. H. G. Feichtinger and A. J. E. M. Janssen, Validity of WH-frame bound conditions depends on lattice parameters, Appl. Comput. Harmon. Anal. 8 (2000), no. 1, 104-112. MR 2000j:42044
  • 17. H. G. Feichtinger and W. Kozek, Quantization of TF lattice-invariant operators on elementary LCA groups, in [19], pp. 233-266. MR 98j:42019
  • 18. H. G. Feichtinger and K. Nowak, A first survey of Gabor multipliers, in [20], pp. 99-128.
  • 19. H. G. Feichtinger and T. Strohmer (eds.), Gabor Analysis and Algorithms, Birkhäuser, Boston, 1998. MR 98h:42001
  • 20. H. G. Feichtinger and T. Strohmer (eds.), Advances in Gabor Analysis, Birkhäuser, Boston, 2003.
  • 21. H. G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis, in [19], pp. 123-170. MR 98j:42018
  • 22. J.-P. Gabardo and D. Han, Aspects of Gabor analysis and operator algebras, in [20], pp. 129-152.
  • 23. L. Grafakos and C. Lennard, Characterization of $L\sp p(\mathbf R\sp n)$ using Gabor frames, J. Fourier Anal. Appl. 7 (2001), no. 2, 101-126. MR 2002b:42045
  • 24. N. Grip and W. Sun, Remarks on [41], J. Fourier Anal. Appl. 9 (2003), no. 1, 97-100.
  • 25. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001. MR 2002h:42001
  • 26. K. Gröchenig and C. Heil, Gabor meets Littlewood-Paley: Gabor expansions in $L\sp p(\mathbb R\sp d)$, Studia Math. 146 (2001), no. 1, 15-33. MR 2002b:42028
  • 27. K. Gröchenig, C. Heil, and K. Okoudjou, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process. 1 (2002), no. 3, 225-260.
  • 28. K. Gröchenig and A. J. E. M. Janssen, A new criterion for Gabor frames, letter to the editor, J. Fourier Anal. Appl. 8 (2002), no. 5, 507-512. MR 2003g:42048
  • 29. K. Gröchenig and M. Leinert, Wiener's lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc., to appear.
  • 30. C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), no. 4, 628-666. MR 91c:42032
  • 31. A. J. E. M. Janssen, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl. 1 (1995), no. 4, 403-436. MR 97e:42007
  • 32. -, On generating tight Gabor frames at critical density, J. Fourier Anal. Appl. 9 (2003), no. 2, 175-214.
  • 33. -, Zak transforms with few zeros and the tie, in [20], pp. 31-70.
  • 34. A. J. E. M. Janssen and T. Strohmer, Hyperbolic secants yield Gabor frames, Appl. Comput. Harmon. Anal. 12 (2002), no. 2, 259-267. MR 2002k:42073
  • 35. K. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc., to appear.
  • 36. A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in $L\sb 2(\mathbf R\sp d)$, Duke Math. J. 89 (1997), no. 2, 237-282. MR 98i:42013
  • 37. W. Sun and X. Zhou, On Kadec's $1/4$-theorem and the stability of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), no. 2, 239-242. MR 2000j:42047
  • 38. -, On the stability of Gabor frames, Adv. in Appl. Math. 26 (2001), no. 3, 181-191. MR 2002c:42043
  • 39. D. F. Walnut, Continuity properties of the Gabor frame operator, J. Math. Anal. Appl. 165 (1992), no. 2, 479-504. MR 93f:42059
  • 40. J. Wexler and S. Raz, Discrete Gabor expansions, Signal Process. 21 (1990), no. 3, 207-221.
  • 41. J. Zhang, On the stability of wavelet and Gabor frames (Riesz bases), J. Fourier Anal. Appl. 5 (1999), no. 1, 105-125. MR 2000a:42055

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42C15, 47B38, 81R30, 94A12

Retrieve articles in all journals with MSC (2000): 42C15, 47B38, 81R30, 94A12


Additional Information

Hans G. Feichtinger
Affiliation: Department of Mathematics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
Email: hans.feichtinger@univie.ac.at

Norbert Kaiblinger
Affiliation: Department of Mathematics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
Address at time of publication: Georgia Institute of Technology, School of Mathematics, Atlanta, Georgia 30332-0160
Email: norbert.kaiblinger@univie.ac.at

DOI: https://doi.org/10.1090/S0002-9947-03-03377-4
Keywords: Gabor frame, Weyl-Heisenberg frame, dual atom, Riesz basis, stability, perturbation, time-frequency lattice, modulation space, twisted convolution, coherent states
Received by editor(s): April 29, 2002
Received by editor(s) in revised form: April 9, 2003
Published electronically: November 12, 2003
Additional Notes: The second author was supported by the Austrian Science Fund FWF, grants P-14485 and J-2205
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society