Newton polyhedra, unstable faces and the poles of Igusa's local zeta function
Author:
Kathleen Hoornaert
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 17511779
MSC (2000):
Primary 11S40, 11D79; Secondary 14M25, 52B20, 14G10
Published electronically:
December 15, 2003
MathSciNet review:
2031040
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we examine when the order of a pole of Igusa's local zeta function associated to a polynomial is smaller than ``expected''. We carry out this study in the case that is sufficiently nondegenerate with respect to its Newton polyhedron , and the main result of this paper is a proof of one of the conjectures of Denef and Sargos. Our technique consists in reducing our question about the polynomial to the same question about polynomials , where are faces of depending on the examined pole and is obtained from by throwing away all monomials of whose exponents do not belong to . Secondly, we obtain a formula for Igusa's local zeta function associated to a polynomial , with unstable, which shows that, in this case, the upperbound for the order of the examined pole is obviously smaller than ``expected''.
 [Den84]
J.
Denef, The rationality of the Poincaré series associated to
the 𝑝adic points on a variety, Invent. Math.
77 (1984), no. 1, 1–23. MR 751129
(86c:11043), http://dx.doi.org/10.1007/BF01389133
 [Den87]
J.
Denef, On the degree of Igusa’s local zeta function,
Amer. J. Math. 109 (1987), no. 6, 991–1008. MR 919001
(89d:11108), http://dx.doi.org/10.2307/2374583
 [Den91]
Jan
Denef, Report on Igusa’s local zeta function,
Astérisque 201203 (1991), Exp.\ No.\ 741,
359–386 (1992). Séminaire Bourbaki, Vol.\ 1990/91. MR 1157848
(93g:11119)
 [Den95]
J.
Denef, Poles of 𝑝adic complex powers and Newton
polyhedra, Nieuw Arch. Wisk. (4) 13 (1995),
no. 3, 289–295. MR 1378800
(96m:11106)
 [DH01]
Jan
Denef and Kathleen
Hoornaert, Newton polyhedra and Igusa’s local zeta
function, J. Number Theory 89 (2001), no. 1,
31–64. MR
1838703 (2002g:11170), http://dx.doi.org/10.1006/jnth.2000.2606
 [DLS97]
J.
Denef, A.
Laeremans, and P.
Sargos, On the largest nontrivial pole of the distribution
\vert𝑓\vert^{𝑠}, Sūrikaisekikenkyūsho
Kōkyūroku 999 (1997), 1–9. Research on
prehomogeneous vector spaces (Japanese) (Kyoto, 1996). MR 1622331
(99g:11101)
 [DS92]
Jan
Denef and Patrick
Sargos, Polyèdre de Newton et distribution
𝑓^{𝑠}₊. II, Math. Ann. 293
(1992), no. 2, 193–211 (French). MR 1166118
(93f:32037), http://dx.doi.org/10.1007/BF01444712
 [HL00]
K. Hoornaert and D. Loots, Polygusa: a computer program for Igusa's local zeta function, http://www.wis.kuleuven.ac.be/wis/algebra/kathleen.htm, 2000.
 [Hoo02]
K. Hoornaert, Newton polyhedra and the poles of Igusa's local zeta function, Bull. Belg. Math. Soc.  Simon Stevin 9 (2002), 589606.
 [Igu74]
Junichi
Igusa, Complex powers and asymptotic expansions. I. Functions of
certain types, J. Reine Angew. Math. 268/269 (1974),
110–130. Collection of articles dedicated to Helmut Hasse on his
seventyfifth birthday, II. MR 0347753
(50 #254)
Junichi
Igusa, Complex powers and asymptotic expansions. II. Asymptotic
expansions, J. Reine Angew. Math. 278/279 (1975),
307–321. MR 0404215
(53 #8018)
 [Igu78]
Junichi
Igusa, Forms of higher degree, Tata Institute of Fundamental
Research Lectures on Mathematics and Physics, vol. 59, Tata Institute
of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi,
1978. MR
546292 (80m:10020)
 [LM85]
Ben
Lichtin and Diane
Meuser, Poles of a local zeta function and Newton polygons,
Compositio Math. 55 (1985), no. 3, 313–332. MR 799820
(87a:11120)
 [PS00]
D.
H. Phong and Jacob
Sturm, Algebraic estimates, stability of local zeta functions, and
uniform estimates for distribution functions, Ann. of Math. (2)
152 (2000), no. 1, 277–329. MR 1792297
(2002f:11180), http://dx.doi.org/10.2307/2661384
 [PSS99]
D.
H. Phong, E.
M. Stein, and J.
A. Sturm, On the growth and stability of realanalytic
functions, Amer. J. Math. 121 (1999), no. 3,
519–554. MR 1738409
(2002a:58025)
 [Roc70]
R.
Tyrrell Rockafellar, Convex analysis, Princeton Mathematical
Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
(43 #445)
 [Zn99]
W.A. ZúñigaGalindo, Local zeta functions and Newton polyhedra, preprint, 1999.
 [Den84]
 J. Denef, The rationality of the Poincaré series associated to the adic points on a variety, Invent. Math. 77 (1984), 123. MR 86c:11043
 [Den87]
 , On the degree of Igusa's local zeta function, Amer. J. Math. 109 (1987), 9911008. MR 89d:11108
 [Den91]
 , Report on Igusa's local zeta function, Astérisque 201203 (1991), 359386, Séminaire Bourbaki 1990/1991. MR 93g:11119
 [Den95]
 , Poles of adic complex powers and Newton polyhedra, Nieuw Arch. Wisk. 13 (1995), no. 3, 289295. MR 96m:11106
 [DH01]
 J. Denef and K. Hoornaert, Newton polyhedra and Igusa's local zeta function, J. Number Theory 89 (2001), 3164. MR 2002g:11170
 [DLS97]
 J. Denef, A. Laeremans, and P. Sargos, On the largest nontrivial pole of the distribution , RIMS Kokyuroku 999 (1997), 19. MR 99g:11101
 [DS92]
 J. Denef and P. Sargos, Polyèdre de Newton et distribution . II, Math. Ann. 293 (1992), 193211. MR 93f:32037
 [HL00]
 K. Hoornaert and D. Loots, Polygusa: a computer program for Igusa's local zeta function, http://www.wis.kuleuven.ac.be/wis/algebra/kathleen.htm, 2000.
 [Hoo02]
 K. Hoornaert, Newton polyhedra and the poles of Igusa's local zeta function, Bull. Belg. Math. Soc.  Simon Stevin 9 (2002), 589606.
 [Igu74]
 J.I. Igusa, Complex powers and asympotic expansions I, J. Reine Angew. Math 268/269 (1974), 110130; II, ibid, 278/279, 307321,1975. MR 50:254; MR 53:8018
 [Igu78]
 , Lectures on forms of higher degree, Tata Inst. Fund. Res. Lectures on Math. and Phys., vol. 59, SpringerVerlag, HeidelbergNew YorkBerlin, 1978. MR 80m:10020
 [LM85]
 B. Lichtin and D. Meuser, Poles of a local zeta function and Newton polygons, Compositio Math. 55 (1985), 313332. MR 87a:11120
 [PS00]
 D.H. Phong and J.A. Sturm, Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, Ann. of Math. 152 (2000), 277329. MR 2002f:11180
 [PSS99]
 D.H. Phong, E.M. Stein, and J.A. Sturm, On the growth and stability of real analytic functions, Amer. J. Math. 121 (1999), 519554. MR 2002a:58025
 [Roc70]
 R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton, N.J., 1970. MR 43:445
 [Zn99]
 W.A. ZúñigaGalindo, Local zeta functions and Newton polyhedra, preprint, 1999.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
11S40,
11D79,
14M25,
52B20,
14G10
Retrieve articles in all journals
with MSC (2000):
11S40,
11D79,
14M25,
52B20,
14G10
Additional Information
Kathleen Hoornaert
Affiliation:
Department of Mathematics, Catholic University Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
DOI:
http://dx.doi.org/10.1090/S0002994703035074
PII:
S 00029947(03)035074
Keywords:
Igusa zeta function,
Newton polyhedron,
congruences,
$p$adic integrals
Received by editor(s):
March 12, 2002
Published electronically:
December 15, 2003
Article copyright:
© Copyright 2003
American Mathematical Society
