Young wall realization of crystal bases for classical Lie algebras

Authors:
Seok-Jin Kang, Jeong-Ah Kim, Hyeonmi Lee and Dong-Uy Shin

Translated by:

Journal:
Trans. Amer. Math. Soc. **356** (2004), 2349-2378

MSC (2000):
Primary 81R50

DOI:
https://doi.org/10.1090/S0002-9947-03-03400-7

Published electronically:
December 12, 2003

MathSciNet review:
2048521

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a new realization of crystal bases for finite-dimensional irreducible modules over classical Lie algebras. The basis vectors are parameterized by certain Young walls lying between highest weight and lowest weight vectors.

**1.**W. Fulton,*Young Tableau: with applications to representation theory and geometry*, Cambridge University Press, 1997. MR**99f:05119****2.**J. Hong, S.-J. Kang,*Introduction to Quantum Groups and Crystal Bases*, Graduate Studies in Mathematics**42**, Amer. Math. Soc., 2002. MR**2002m:17012****3.**S.-J. Kang,*Crystal bases for quantum affine algebras and combinatorics of Young walls*, Proc. London Math. Soc. 86 (2003), 29-69.**4.**S.-J. Kang, J.-H. Kwon,*Fock space representations of quantum affine algebras and generalized Lascoux-Leclerc-Thibon algorithm*, KIAS preprint M02011.**5.**S.-J. Kang, K. C. Misra,*Crystal bases and tensor product decompositions of -modules*, J. Algebra 163 (1994), 675-691. MR**95f:17013****6.**M. Kashiwara,*Crystalizing the -analogue of universal enveloping algebras*, Comm. Math. Phys.**133**(1990), 249-260. MR**92b:17018****7.**-,*On crystal bases of the -analogue of universal enveloping algebras*, Duke Math. J.**63**(1991), 465-516. MR**93b:17045****8.**-,*Similarity of crystal bases*, in*Lie Algebras and Their Representations, Seoul (1995)*, S.-J. Kang, M.-H. Kim, I. Lee (eds.), Contemp. Math.**194**(1996), Amer. Math. Soc., 177-186. MR**97g:17013****9.**M. Kashiwara, T. Nakashima,*Crystal graphs for representations of the -analogue of classical Lie algebras*, J. Algebra**165**(1994), 295-345. MR**95c:17025****10.**J.-A. Kim, D.-U. Shin,*Correspondence between Young walls and Young tableaux realizations of crystal bases for the classical Lie algebras*, preprint math.QA/0303287.**11.**H. Lee,*Demazure crystals of type and Young walls*, KIAS preprint M02007.**12.**P. Littelmann,*Crystal graphs and Young tableaux*, J. Algebra**175**(1995), 65-87. MR**96h:17022****13.**-,*Paths and root operators in representation theory*, Ann. of Math.**142**(1995), 499-525. MR**96m:17011****14.**-,*A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras*, Invent. Math. 116 (1994), 329-346. MR**95f:17023****15.**I. G. Macdonald,*Symmetric Functions and Hall Polynomials*, Oxford University Press, Oxford, 2nd ed., 1995. MR**96h:05207****16.**T. Nakashima,*Crystal base and a generalization of the Littlewood-Richardson rule for classical Lie algebras*, Comm. Math. Phys.**154**(1993), 215-243. MR**94f:17015**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
81R50

Retrieve articles in all journals with MSC (2000): 81R50

Additional Information

**Seok-Jin Kang**

Affiliation:
School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri 2 Dong, Dongdaemun-gu, Seoul 130-722, Korea

Email:
sjkang@kias.re.kr

**Jeong-Ah Kim**

Affiliation:
Department of Mathematics, Seoul National University, Seoul 151-747, Korea

Email:
jakim@math.snu.ac.kr

**Hyeonmi Lee**

Affiliation:
School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri 2 Dong, Dongdaemun-gu, Seoul 130-722, Korea

Email:
hmlee@kias.re.kr

**Dong-Uy Shin**

Affiliation:
School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri 2 Dong, Dongdaemun-gu, Seoul 130-722, Korea

Email:
shindong@kias.re.kr

DOI:
https://doi.org/10.1090/S0002-9947-03-03400-7

Received by editor(s):
June 5, 2002

Received by editor(s) in revised form:
April 2, 2003

Published electronically:
December 12, 2003

Additional Notes:
The first author’s research was supported by KOSEF Grant # 98-0701-01-5-L and the Young Scientist Award, Korean Academy of Science and Technology

The second, third, and fourth authors’ research was supported by KOSEF Grant # 98-0701-01-5-L and BK21 Mathematical Sciences Division, Seoul National University

Article copyright:
© Copyright 2003
American Mathematical Society