Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sur les transformées de Riesz dans le cas du Laplacien avec drift


Authors: Noël Lohoué and Sami Mustapha
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 2139-2147
MSC (2000): Primary 58Jxx, 43-XX; Secondary 35Jxx, 35Kxx
DOI: https://doi.org/10.1090/S0002-9947-04-03159-9
Published electronically: February 2, 2004
MathSciNet review: 2048512
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove $L^p$ estimates for Riesz transforms with drift.


References [Enhancements On Off] (What's this?)

  • [1] G. Alexopoulos, An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth, Canad. J. Math. 44 (1992), 691-727. MR 93j:22006
  • [2] G. Alexopoulos, Puissances de convolution sur les groupes à croissance polynomiale du volume, C. R. Acad. Sci. Série I 324 (1997), 771-776. MR 98a:43001
  • [3] J.-P. Anker, E. Damek, C. Yacoub, Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 643-679. MR 99a:22014
  • [4] R. R. Coifman et G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, 1971. MR 58:17690
  • [5] E. Damek et F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups, J. Geom. Anal. 3 (1992), 213-248. MR 93d:43006
  • [6] B. M. Davies, One-parameter semigroups, Academic Press, 1980. MR 82i:47060
  • [7] N. Lohoué, Transformées de Riesz et fonctions de Littlewood Paley sur les groupes non moyennables, C. R. Acad. Sci. Série I 306 (1988), 327-330. MR 89b:43008
  • [8] N. Lohoué, Transformées de Riesz et fonctions sommables, Amer. J. Math. 114 (1992), 875-992. MR 93k:58214
  • [9] N. Lohoué et S. Mustapha, Sur les transformées de Riesz sur les groupes de Lie moyennables et sur certains espaces homogènes, Canad. J. Math. 50 (1998), 1090-1104. MR 2000a:43008
  • [10] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monograph, 1968. MR 46:5933
  • [11] D. W. Robinson, Elliptic Operators and Lie Groups, Clarendon Press, Oxford, New York, Tokyo, 1991. MR 92m:58133
  • [12] N. Th. Varopoulos, L. Saloff-Coste et Th. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math., 100, 1993. MR 95f:43008
  • [13] K. Yosida, Functional Analysis, Springer-Verlag, 1978. MR 58:17765

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58Jxx, 43-XX, 35Jxx, 35Kxx

Retrieve articles in all journals with MSC (2000): 58Jxx, 43-XX, 35Jxx, 35Kxx


Additional Information

Noël Lohoué
Affiliation: Departement de Mathématiques, Bât. 425, Université Paris XI, 91405, Orsay Cedex, France

Sami Mustapha
Affiliation: Institut de Mathématiques, Université Paris VI, 4, Place Jussieu, 75252, Paris Cedex, France

DOI: https://doi.org/10.1090/S0002-9947-04-03159-9
Keywords: Riesz transforms, drift, Lie groups, convolution
Received by editor(s): October 30, 1998
Published electronically: February 2, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society