Maps between non-commutative spaces

Author:
S. Paul Smith

Journal:
Trans. Amer. Math. Soc. **356** (2004), 2927-2944

MSC (2000):
Primary 14A22; Secondary 16S38

DOI:
https://doi.org/10.1090/S0002-9947-03-03411-1

Published electronically:
November 18, 2003

MathSciNet review:
2052602

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a graded ideal in a not necessarily commutative graded -algebra in which for all . We show that the map induces a closed immersion between the non-commutative projective spaces with homogeneous coordinate rings and . We also examine two other kinds of maps between non-commutative spaces. First, a homomorphism between not necessarily commutative -graded rings induces an affine map from a non-empty open subspace . Second, if is a right noetherian connected graded algebra (not necessarily generated in degree one), and is a Veronese subalgebra of , there is a map ; we identify open subspaces on which this map is an isomorphism. Applying these general results when is (a quotient of) a weighted polynomial ring produces a non-commutative resolution of (a closed subscheme of) a weighted projective space.

**1.**M. Artin and J.J. Zhang, Non-commutative Projective Schemes,*Adv. Math.*,**109**(1994), 228-287. MR**96a:14004****2.**V. Baranovsky, V. Ginzburg, and A. Kuznetzov, Quiver varieties and a noncommutative ,*Compositio Math.,***134**(2002) 283-318.**3.**A. del Rio, Graded rings and equivalences of categories,*Comm. Alg.,***19**(1991) 997-1012. MR**92d:16011****4.**M. Beltrametti and L. Robbiano, Introduction to the theory of weighted projective spaces,*Expositiones Math.,***4**(1986) 111-162. MR**88h:14052****5.**I. Dolgachev, Weighted projective varieties, in*Group actions and vector fields,*pp. 34-71, Lecture Notes in Math. 956, Springer-Verlag, 1982. MR**85g:14060****6.**P. Gabriel, Des Catégories Abéliennes,*Bull. Soc. Math. Fr.,***90**(1962) 323-448. MR**38:1144****7.**A. Kapustin, A. Kuznetzov, and D. Orlov, Noncommutative Instantons and Twistor Transform,*Comm. Math. Phys.,***221**(2001) 385-432 MR**2003f:58017****8.**A.L. Rosenberg,*Non-commutative algebraic geometry and representations of quantized algebras,*Math. and Its Appl., Vol. 330, Kluwer Academic Publishers, 1995. MR**97b:14004****9.**S.P. Smith, Subspaces of non-commutative spaces,*Trans. Amer. Math. Soc.,***354**(2002) 2131-2171. MR**2003f:14002****10.**S.P. Smith, Integral non-commutative spaces,*J. Algebra,***246**(2001) 793-810. MR**2003d:16037****11.**D. Stephenson, Quantum planes of weight ,*J. Algebra,***225**(2000) 70-92. Corrigendum,*J. Algebra,***234**(2000) 277-278. MR**2001a:16044****12.**A.B. Verevkin, On a non-commutative analogue of the category of coherent sheaves on a projective scheme,*Amer. Math. Soc. Transl.*(2)**151**(1992) 41-53. MR**93j:14002****13.**M. Van den Bergh, Blowing up of a non-commutative smooth surface,*Mem. Amer. Math. Soc.,***154**(2001) no. 734. MR**2002k:16057**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14A22,
16S38

Retrieve articles in all journals with MSC (2000): 14A22, 16S38

Additional Information

**S. Paul Smith**

Affiliation:
Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195

Email:
smith@math.washington.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03411-1

Received by editor(s):
September 18, 2002

Received by editor(s) in revised form:
April 29, 2003

Published electronically:
November 18, 2003

Additional Notes:
The author was supported by NSF grant DMS-0070560

Article copyright:
© Copyright 2003
American Mathematical Society