Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Core versus graded core, and global sections of line bundles

Authors: Eero Hyry and Karen E. Smith
Journal: Trans. Amer. Math. Soc. 356 (2004), 3143-3166
MSC (2000): Primary 13A30; Secondary 13A15, 14B15
Published electronically: November 4, 2003
MathSciNet review: 2052944
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find formulas for the graded core of certain $\mathfrak{m}$-primary ideals in a graded ring. In particular, if $S$ is the section ring of an ample line bundle on a Cohen-Macaulay complex projective variety, we show that under a suitable hypothesis, the core and graded core of the ideal of $S$ generated by all elements of degrees at least $N$ (for some, equivalently every, large $N$) are equal if and only if the line bundle admits a non-zero global section. We also prove a formula for the graded core of the powers of the unique homogeneous maximal ideal in a standard graded Cohen-Macaulay ring of arbitrary characteristic. Several open problems are posed whose solutions would lead to progress on a non-vanishing conjecture of Kawamata.

References [Enhancements On Off] (What's this?)

  • 1. F. Ambro, Ladders on Fano varieties, Algebraic Geometry, 9, J. Math. Sci. (New York) 94 (1999), no. 1, 1126-1135. MR 2000e:14067
  • 2. A. Corso, C. Polini, and B. Ulrich, The structure of the core of ideals, Math. Ann. 321 (2001), no. 1, 89-105. MR 2002j:13005
  • 3. -, Core and residual intersections of ideals, Trans. Amer. Math. Soc. 354 (2002), 2579-2594. MR 2003b:13035
  • 4. S. D. Cutkosky, Appendix to [22], Math. Res. Lett. 1 (1994), no. 6, 739-755. MR 95k:13028
  • 5. M. Demazure, Anneaux gradués normaux, Introduction à la théorie des singularités, II, 35-68, Travaux en Cours, 37, Hermann, Paris, 1988. MR 91k:14004
  • 6. S. Goto and K. Nishida, The Cohen-Macaulay and Gorenstein Rees algebras associated to filtrations, Mem. Amer. Math. Soc. 526 (1994). MR 95b:13001
  • 7. S. Goto and K. I. Watanabe, On graded rings I, J. Math. Soc. Japan 30 (1978), no. 2, 179-213. MR 81m:13021
  • 8. S. Goto and Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint
  • 9. A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique II, Inst. Hautes Etudes Sci. Publ. Math. 8 (1961). MR 29:1208, MR 36:177b
  • 10. P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr. 85 (1978), 57-73. MR 80i:13008
  • 11. C. Huneke and I. Swanson, Cores of ideals in $2$-dimensional regular local rings, Michigan Math. J. 42 (1995), 193-208. MR 96j:13021
  • 12. C. Huneke and K. Smith, Tight closure and the Kodaira vanishing theorem, J. Reine Angew. Math. 484 (1997), 127-152. MR 98e:13007
  • 13. C. Huneke and N. V. Trung, On the core of ideals, preprint.
  • 14. E. Hyry, Blow-up algebras and rational singularities, Manuscripta Math. 98 (1999), 377-390. MR 2001d:13002
  • 15. -, Coefficient ideals and the Cohen-Macaulay property of Rees algebras, Proc. Amer. Math. Soc. 129 (2001), 1299-1308. MR 2001h:13005
  • 16. E. Hyry and K. E. Smith, On a non-vanishing conjecture of Kawamata and on the core of an ideal, preprint (2002).
  • 17. S. Itoh, Integral closures of ideals generated by regular sequences, J. Algebra 117 (1988), 390-401. MR 90g:13013
  • 18. Y. Kawamata, On effective non-vanishing and base-point-freeness, Asian J. Math 4 (2000), 173-181. MR 2002b:14010
  • 19. -, Semipositivity, vanishing and applications, School on Vanishing Theorems and Effective Results in Algebraic Geometry, Abdus Salam International Centre for Theoretical Physics, Trieste (2000). (unpublished)
  • 20. S. Kleiman, Towards a Numerical Theory of Ampleness, Annals of Mathematics (2) 84 (1966), 293-344. MR 34:5834
  • 21. R. Lazarsfeld, Positivity in Algebraic Geometry, in preparation.
  • 22. J. Lipman, Adjoints of ideals in regular local rings, Math. Res. Letters 1 (1994), 739-755. MR 95k:13028
  • 23. -, Cohen-Macaulayness in graded algebras, Math. Res. Letters 1 (1994), 149-157. MR 95d:13006
  • 24. C. Polini, and B. Ulrich, A formula for the core of an ideal, preprint.
  • 25. D. Rees and J. Sally, General elements and joint reductions, Michigan Math. J. 35 (1988), 241-254. MR 89h:13034
  • 26. J. B. Sancho de Salas, Blowing-up morphisms with Cohen-Macaulay associated graded rings, Géométrie algébrique et applications, I (La Rábida, 1984), 201-209, Travaux en Cours, 22, Hermann, Paris, 1987. MR 88k:14008
  • 27. P. Schenzel, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Mathematics, vol. 907, Springer-Verlag, Berlin-New York, 1982. MR 83i:13013
  • 28. E. Snapper, Multiples of divisors, Jour. of Math. and Mech. 8 (1959), 967-992. MR 22:44
  • 29. K. E. Smith, Fujita's freeness conjecture in terms of local cohomology, J. Algebraic Geom. 6 (1997), no. 3, 417-429. MR 98m:14002
  • 30. -, Globally F-regular varieties: Applications to vanishing theorems for quotients of Fano varieties, Michigan Math J. 48 (2000), 553-572. MR 2001k:13007
  • 31. N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49. MR 87h:13018
  • 32. -, The largest non-vanishing degree of graded local cohomology modules, J. Algebra 215 (1999), no. 2, 481-499. MR 2000f:13038
  • 33. W. V. Vasconcelos, Arithmetic of blowup algebras, London Math. Soc. Lecture Note Ser., vol. 195, Cambridge University Press, Cambridge, 1994. MR 95g:13005

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 13A30, 13A15, 14B15

Retrieve articles in all journals with MSC (2000): 13A30, 13A15, 14B15

Additional Information

Eero Hyry
Affiliation: Department of Mathematics, University of Helsinki, Helsinki, Finland

Karen E. Smith
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Received by editor(s): January 30, 2003
Published electronically: November 4, 2003
Additional Notes: The first author’s research was supported by the National Academy of Finland, project number 48556
The second author’s research was partially supported by the Clay Foundation and by the US National Science Foundation Grant DMS 00-70722.
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society