Construction and recognition of hyperbolic 3manifolds with geodesic boundary
Authors:
Roberto Frigerio and Carlo Petronio
Journal:
Trans. Amer. Math. Soc. 356 (2004), 32433282
MSC (2000):
Primary 57M50; Secondary 57M25
Published electronically:
August 26, 2003
MathSciNet review:
2052949
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We extend to the context of hyperbolic 3manifolds with geodesic boundary Thurston's approach to hyperbolization by means of geometric triangulations. In particular, we introduce moduli for (partially) truncated hyperbolic tetrahedra, and we discuss consistency and completeness equations. Moreover, building on previous work of Ushijima, we extend Weeks' tilt formula algorithm, which computes the EpsteinPenner canonical decomposition, to an algorithm that computes the Kojima decomposition. Our theory has been exploited to classify all the orientable finitevolume hyperbolic manifolds with nonempty compact geodesic boundary admitting an ideal triangulation with at most four tetrahedra. The theory is particularly interesting in the case of complete finitevolume manifolds with geodesic boundary in which the boundary is noncompact. We include this case using a suitable adjustment of the notion of ideal triangulation, and we show how this case arises within the theory of knots and links.
 1.
G. AMENDOLA, A calculus for ideal triangulations of threemanifolds with embedded arcs, math.GT/0301219.
 2.
S. BASEILHAC, R. BENEDETTI, Quantum hyperbolic state sum invariants of manifolds, math.GT/0101234.
 3.
Alan
F. Beardon, The geometry of discrete groups, Graduate Texts in
Mathematics, vol. 91, SpringerVerlag, New York, 1983. MR 698777
(85d:22026)
 4.
Riccardo
Benedetti and Carlo
Petronio, Lectures on hyperbolic geometry, Universitext,
SpringerVerlag, Berlin, 1992. MR 1219310
(94e:57015)
 5.
Patrick
J. Callahan, Martin
V. Hildebrand, and Jeffrey
R. Weeks, A census of cusped hyperbolic
3manifolds, Math. Comp.
68 (1999), no. 225, 321–332. With microfiche
supplement. MR
1620219 (99c:57035), http://dx.doi.org/10.1090/S0025571899010364
 6.
D.
B. A. Epstein and R.
C. Penner, Euclidean decompositions of noncompact hyperbolic
manifolds, J. Differential Geom. 27 (1988),
no. 1, 67–80. MR 918457
(89a:57020)
 7.
R. FRIGERIO, B. MARTELLI, C. PETRONIO, Small hyperbolic manifolds with geodesic boundary, math.GT/0211425.
 8.
Michihiko
Fujii, Hyperbolic 3manifolds with totally geodesic boundary which
are decomposed into hyperbolic truncated tetrahedra, Tokyo J. Math.
13 (1990), no. 2, 353–373. MR 1088237
(92a:57043), http://dx.doi.org/10.3836/tjm/1270132267
 9.
S. KOJIMA, Polyhedral decomposition of hyperbolic manifolds with boundary, Proc. Work. Pure Math. 10 (1990), 3757.
 10.
Sadayoshi
Kojima, Polyhedral decomposition of hyperbolic 3manifolds with
totally geodesic boundary, Aspects of lowdimensional manifolds, Adv.
Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992,
pp. 93–112. MR 1208308
(94c:57023)
 11.
S.
V. Matveev, Transformations of special spines, and the Zeeman
conjecture, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987),
no. 5, 1104–1116, 1119 (Russian); English transl., Math.
USSRIzv. 31 (1988), no. 2, 423–434. MR 925096
(89d:57014)
 12.
Riccardo
Piergallini, Standard moves for standard polyhedra and spines,
Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988),
391–414. Third National Conference on Topology (Italian) (Trieste,
1986). MR
958750 (89k:57003)
 13.
Makoto
Sakuma and Jeffrey
R. Weeks, The generalized tilt formula, Geom. Dedicata
55 (1995), no. 2, 115–123. MR 1334208
(96d:57012), http://dx.doi.org/10.1007/BF01264924
 14.
W. P. THURSTON, ``The Geometry and Topology of manifolds'', mimeographed notes, Princeton, 1979.
 15.
William
P. Thurston, Threedimensional manifolds, Kleinian
groups and hyperbolic geometry, Bull. Amer.
Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524
(83h:57019), http://dx.doi.org/10.1090/S027309791982150030
 16.
Jeffery
L. Tollefson, Involutions of sufficiently large 3manifolds,
Topology 20 (1981), no. 4, 323–352. MR 617370
(82h:57014), http://dx.doi.org/10.1016/00409383(81)900185
 17.
V.
G. Turaev and O.
Ya. Viro, State sum invariants of 3manifolds and quantum
6𝑗symbols, Topology 31 (1992), no. 4,
865–902. MR 1191386
(94d:57044), http://dx.doi.org/10.1016/00409383(92)90015A
 18.
A. USHIJIMA, A unified viewpoint about geometric objects in hyperbolic space and the generalized tilt formula, In: ``Hyperbolic spaces and related topics, II, Kyoto, 1999'', Surikaisekikenkyusho Kokyuroku 1163 (2000), 8598.
 19.
Jeffrey
R. Weeks, Convex hulls and isometries of cusped hyperbolic
3manifolds, Topology Appl. 52 (1993), no. 2,
127–149. MR 1241189
(95a:57021), http://dx.doi.org/10.1016/01668641(93)900329
 20.
J.R. WEEKS, SnapPea, The hyperbolic structures computer program, available from www.northnet.org/weeks.
 1.
 G. AMENDOLA, A calculus for ideal triangulations of threemanifolds with embedded arcs, math.GT/0301219.
 2.
 S. BASEILHAC, R. BENEDETTI, Quantum hyperbolic state sum invariants of manifolds, math.GT/0101234.
 3.
 A. F. BEARDON, ``The geometry of discrete groups'', Graduate Texts in Mathematics, Vol. 91, SpringerVerlag, New York, 1995. MR 85d:22026
 4.
 R. BENEDETTI, C. PETRONIO, ``Lectures in Hyperbolic Geometry'', Universitext, SpringerVerlag, Berlin, 1992. MR 94e:57015
 5.
 P. J. CALLAHAN, M. V. HILDEBRANDT, J. R. WEEKS, A census of cusped hyperbolic manifolds. With microfiche supplement, Math. Comp. 68 (1999), 321332. MR 99c:57035
 6.
 D. B. A. EPSTEIN, R. C. PENNER, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988), 6780. MR 89a:57020
 7.
 R. FRIGERIO, B. MARTELLI, C. PETRONIO, Small hyperbolic manifolds with geodesic boundary, math.GT/0211425.
 8.
 M. FUJII, Hyperbolic manifolds with totally geodesic boundary which are decomposed into hyperbolic truncated tetrahedra, Tokyo J. Math. 13 (1990), 353373. MR 92a:57043
 9.
 S. KOJIMA, Polyhedral decomposition of hyperbolic manifolds with boundary, Proc. Work. Pure Math. 10 (1990), 3757.
 10.
 S. KOJIMA, Polyhedral decomposition of hyperbolic manifolds with totally geodesic boundary, In: ``Aspects of lowdimensional manifolds, Kinokuniya, Tokyo'', Adv. Stud. Pure Math. 20 (1992), 93112. MR 94c:57023
 11.
 S. V. MATVEEV, Transformations of special spines, and the Zeeman conjecture, Math. USSRIzv. 31 (1988), 423434. MR 89d:57014
 12.
 R. PIERGALLINI, Standard moves for standard polyhedra and spines, In: ``Third National Conference on Topology, Trieste, 1986'', Rend. Circ. Mat. Palermo (2) Suppl. 18 (1988), 391414. MR 89k:57003
 13.
 M. SAKUMA, J.R. WEEKS, The generalized tilt formula, Geom. Dedicata 55 (1995), 115123. MR 96d:57012
 14.
 W. P. THURSTON, ``The Geometry and Topology of manifolds'', mimeographed notes, Princeton, 1979.
 15.
 W. P. THURSTON, Threedimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357381. MR 83h:57019
 16.
 J.L. TOLLEFSON, Involutions of sufficiently large manifolds, Topology 20 (1981), 323352. MR 82h:57014
 17.
 V. G. TURAEV, O.YA. VIRO, State sum invariants of manifolds and quantum symbols, Topology 31 (1992), 865902. MR 94d:57044
 18.
 A. USHIJIMA, A unified viewpoint about geometric objects in hyperbolic space and the generalized tilt formula, In: ``Hyperbolic spaces and related topics, II, Kyoto, 1999'', Surikaisekikenkyusho Kokyuroku 1163 (2000), 8598.
 19.
 J. R. WEEKS, Convex hulls and isometries of cusped hyperbolic manifolds, Topology Appl. 52 (1993), 127149. MR 95a:57021
 20.
 J.R. WEEKS, SnapPea, The hyperbolic structures computer program, available from www.northnet.org/weeks.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
57M50,
57M25
Retrieve articles in all journals
with MSC (2000):
57M50,
57M25
Additional Information
Roberto Frigerio
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
Email:
frigerio@sns.it
Carlo Petronio
Affiliation:
Dipartimento di Matematica Applicata, Università di Pisa, Via Bonanno Pisano, 25/B, 6126 Pisa, Italy
Email:
petronio@dma.unipi.it
DOI:
http://dx.doi.org/10.1090/S0002994703033786
PII:
S 00029947(03)033786
Received by editor(s):
December 1, 2001
Received by editor(s) in revised form:
March 20, 2003
Published electronically:
August 26, 2003
Article copyright:
© Copyright 2003 American Mathematical Society
