Integrals, partitions, and cellular automata

Authors:
Alexander E. Holroyd, Thomas M. Liggett and Dan Romik

Translated by:

Journal:
Trans. Amer. Math. Soc. **356** (2004), 3349-3368

MSC (2000):
Primary 26A06; Secondary 05A17, 60C05, 60K35

Published electronically:
December 15, 2003

MathSciNet review:
2052953

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that

where is the decreasing function that satisfies , for . When is an integer and we deduce several combinatorial results. These include an asymptotic formula for the number of integer partitions not having consecutive parts, and a formula for the metastability thresholds of a class of threshold growth cellular automaton models related to bootstrap percolation.

**1.**Michael Aizenman and Geoffrey Grimmett,*Strict monotonicity for critical points in percolation and ferromagnetic models*, J. Statist. Phys.**63**(1991), no. 5-6, 817–835. MR**1116036**, 10.1007/BF01029985**2.**M. Aizenman and J. L. Lebowitz,*Metastability effects in bootstrap percolation*, J. Phys. A**21**(1988), no. 19, 3801–3813. MR**968311****3.**George E. Andrews,*The theory of partitions*, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. Encyclopedia of Mathematics and its Applications, Vol. 2. MR**0557013****4.**George E. Andrews,*The reasonable and unreasonable effectiveness of number theory in statistical mechanics*, The unreasonable effectiveness of number theory (Orono, ME, 1991) Proc. Sympos. Appl. Math., vol. 46, Amer. Math. Soc., Providence, RI, 1992, pp. 21–34. MR**1195840**, 10.1090/psapm/046/1195840**5.**J. Baik, P. Deift, and K. Johansson,*On the distribution of the length of the second row of a Young diagram under Plancherel measure*, Geom. Funct. Anal.**10**(2000), no. 4, 702–731. MR**1791137**, 10.1007/PL00001635**6.**Charles H. Brenner,*Asymptotic analogs of the Rogers-Ramanujan identities*, J. Combin. Theory Ser. A**43**(1986), no. 2, 303–319. MR**867654**, 10.1016/0097-3165(86)90069-5**7.**I. S. Gradshteyn and I. M. Ryzhik,*Table of integrals, series, and products*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR**582453****8.**Janko Gravner and David Griffeath,*First passage times for threshold growth dynamics on 𝑍²*, Ann. Probab.**24**(1996), no. 4, 1752–1778. MR**1415228**, 10.1214/aop/1041903205**9.**Janko Gravner and David Griffeath,*Scaling laws for a class of critical cellular automaton growth rules*, Random walks (Budapest, 1998) Bolyai Soc. Math. Stud., vol. 9, János Bolyai Math. Soc., Budapest, 1999, pp. 167–186. MR**1752894****10.**G. H. Hardy and S. Ramanujan.

Asymptotic formulae for the distribution of integers of various types.*Proc. London Math. Soc., Ser. 2*, 16:112-132, 1918.

Reprinted in The Collected Papers of G. H. Hardy, vol. 1, 277-293.**11.**Paul G. Hoel, Sidney C. Port, and Charles J. Stone,*Introduction to probability theory*, Houghton Mifflin Co., Boston, Mass., 1971. The Houghton Mifflin Series in Statistics. MR**0358880****12.**A. E. Holroyd.

Sharp metastability threshold for two-dimensional bootstrap percolation.*Probability and Related Fields*, 125:195-224, 2003.**13.**Kurt Johansson,*Shape fluctuations and random matrices*, Comm. Math. Phys.**209**(2000), no. 2, 437–476. MR**1737991**, 10.1007/s002200050027**14.**Donald J. Newman,*Analytic number theory*, Graduate Texts in Mathematics, vol. 177, Springer-Verlag, New York, 1998. MR**1488421**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
26A06,
05A17,
60C05,
60K35

Retrieve articles in all journals with MSC (2000): 26A06, 05A17, 60C05, 60K35

Additional Information

**Alexander E. Holroyd**

Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2

Email:
holroyd@math.ubc.ca

**Thomas M. Liggett**

Affiliation:
Department of Mathematics, University of California Los Angeles, Los Angeles, Califonia 90095-1555

Email:
tml@math.ucla.edu

**Dan Romik**

Affiliation:
Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Email:
romik@wisdom.weizmann.ac.il

DOI:
http://dx.doi.org/10.1090/S0002-9947-03-03417-2

Keywords:
Definite integral,
partition asymptotics,
partition identity,
combinatorial probability,
threshold growth model,
bootstrap percolation,
cellular automaton

Received by editor(s):
February 17, 2003

Received by editor(s) in revised form:
May 6, 2003

Published electronically:
December 15, 2003

Additional Notes:
The first author’s research was funded in part by NSF Grant DMS–0072398.

The second author’s research was funded in part by NSF Grant DMS-00-70465.

Article copyright:
© Copyright 2003
American Mathematical Society