Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Infinitely many solutions to fourth order superlinear periodic problems


Authors: Monica Conti, Susanna Terracini and Gianmaria Verzini
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 3283-3300
MSC (2000): Primary 34B15; Secondary 58E05, 47J10
DOI: https://doi.org/10.1090/S0002-9947-03-03514-1
Published electronically: December 12, 2003
MathSciNet review: 2052950
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new min-max approach to the search of multiple $T$-periodic solutions to a class of fourth order equations

\begin{displaymath}u^{iv}(t)-c u''(t)=f(t,u(t)),\hspace{5mm}t\in[0,T],\end{displaymath}

where $f(t,u)$ is continuous, $T$-periodic in $t$ and satisfies a superlinearity assumption when $\vert u\vert\to\infty$. For every $n\in\mathbb{N}$, we prove the existence of a $T$-periodic solution having exactly $2n$ zeroes in $(0,T]$.


References [Enhancements On Off] (What's this?)

  • 1. A.U. Afuwape, J. Mawhin, F. Zanolin, An existence theorem for periodic solutions and applications to some nonlinear ordinary and delay equations, preprint
  • 2. T. Bartsch, M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on $\mathbb{R}^N$, Arch. Rat. Mech. Anal. 124 (1993), 261-276 MR 94g:35078
  • 3. D. Bonheure, L. Sanchez, M. Tarallo, S. Terracini, Heteroclinics connections between nonconsecutive equilibria of a fourth order differential equation, Calculus of Variation and PDE's, to appear
  • 4. J. Chaparova, Existence and numerical approximations of periodic solutions of semilinear fourth-order differential equations, J. Math. Anal. Appl. 273 (2002), 121-136 MR 2003j:35041
  • 5. M. Conti, L. Merizzi, S. Terracini, Radial solutions of superlinear equations on ${R}\sp N$. I. A global variational approach, Arch. Ration. Mech. Anal. 153 (2000), 291-316 MR 2001j:35053
  • 6. M. Conti, S. Terracini, Radial solutions of superlinear equations on ${R}\sp N$. II. The forced case, Arch. Ration. Mech. Anal. 153 (2000), 317-339 MR 2001j:35054
  • 7. M. Conti, S. Terracini, G. Verzini, Nodal solutions to a class of nonstandard superlinear equations on $R^N$, Adv. Differential Equations 7 (2002), 3, 297-318 MR 2003i:35083
  • 8. F.L. Garcia, Periodic solutions of 4th order O.D.E., Dynam. Contin. Discrete Impuls. Systems 7 (2000), 239-254 MR 2001a:34070
  • 9. P. Habets, L. Sanchez, M. Tarallo, S. Terracini, Heteroclinics for a class of fourth order conservative differential equations, Equadiff 10, Prague 2001, CD-ROM Proceedings
  • 10. A.C. Lazer, P.J. McKenna, Large amplitude oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537-578 MR 92g:73059
  • 11. J. Mawhin, F. Zanolin, A continuation approach to fourth order superlinear periodic boundary value problems, Topol. Methods Nonlinear Anal. 2 (1993), 55-74 MR 95a:34063
  • 12. C. Miranda, Un'osservazione sul teorema di Brouwer, Boll. U.M.I. Serie II, Anno II, 1 (1940), 5-7. MR 3:60b
  • 13. V.Y. Mizel, L.A. Peletier, W.C. Troy, Periodic phases in second order materials, Arch. Rat. Mech. Anal. 145 (1998), 343-382 MR 99j:73011
  • 14. Z. Nehari, Characteristic values associated with a class of nonlinear second order differential equations, Acta Math. 105 (1961), 141-175 MR 23:A1097
  • 15. L.A. Peletier, W.C. Troy, Spatial patterns described by the Fisher-Kolmogorov equation: Kinks, Diff. Int. Eq. 8 (1995), 1279-1304 MR 96c:35182
  • 16. L.A. Peletier, W.C. Troy, A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation, Topol. Meth. Nonlinear Anal. 6 (1995), 2, 331-355 MR 97d:34031
  • 17. L.A. Peletier, W.C. Troy, Spatial patterns described by the Fisher-Kolmogorov equation: periodic solutions, SIAM J. Math. Anal. 28 (1997), 1317-1353 MR 98k:35198
  • 18. L.A. Peletier, W.C. Troy, Multibump periodic traveling waves in suspension bridges, Proc. Roy. Soc. Edimburgh, Sect. A 128 (1998), 3, 631-659 MR 99h:34038
  • 19. B.R. Rynne, Global bifurcation for $2m$-th order boundary value problems and infinitely many solutions of superlinear problems, preprint
  • 20. D. Smets, J.B. van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations, J. Diff. Eq. 184 (2002), 78-96
  • 21. M. Struwe, Superlinear elliptic boundary value problems with rotational symmetry, Arch. Math. 39 (1982), 233-240 MR 84a:35097

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34B15, 58E05, 47J10

Retrieve articles in all journals with MSC (2000): 34B15, 58E05, 47J10


Additional Information

Monica Conti
Affiliation: Dipartimento di Matematica del Politecnico, piazza Leonardo da Vinci, 32 - 20133 Milano (I), Italy
Email: monica.conti@polimi.it

Susanna Terracini
Affiliation: Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milano (I), Italy
Email: suster@matapp.unimib.it

Gianmaria Verzini
Affiliation: Dipartimento di Matematica del Politecnico, piazza Leonardo da Vinci, 32 - 20133 Milano (I), Italy
Email: gianmaria.verzini@polimi.it

DOI: https://doi.org/10.1090/S0002-9947-03-03514-1
Keywords: Oscillating solutions, fourth order equations, boundary value problems, variational methods
Received by editor(s): May 25, 2001
Received by editor(s) in revised form: March 21, 2003
Published electronically: December 12, 2003
Additional Notes: This research was supported by MURST project “Metodi Variazionali ed Equazioni Differenziali Non Lineari”
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society