The flat model structure on

Author:
James Gillespie

Translated by:

Journal:
Trans. Amer. Math. Soc. **356** (2004), 3369-3390

MSC (2000):
Primary 55U35, 18G35, 18G15

DOI:
https://doi.org/10.1090/S0002-9947-04-03416-6

Published electronically:
January 29, 2004

MathSciNet review:
2052954

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a cotorsion pair in an abelian category with enough objects and enough objects, we define two cotorsion pairs in the category of unbounded chain complexes. We see that these two cotorsion pairs are related in a nice way when is hereditary. We then show that both of these induced cotorsion pairs are complete when is the ``flat'' cotorsion pair of -modules. This proves the flat cover conjecture for (possibly unbounded) chain complexes and also gives us a new ``flat'' model category structure on . In the last section we use the theory of model categories to show that we can define using a flat resolution of and a cotorsion coresolution of .

**[Ald01]**S. Tempest Aldrich, Edgar E. Enochs, Luis Oyonarte, and J.R. García-Rozas,*Covers and envelopes in Grothendieck categories: flat covers of complexes with applications*, Journal of Algebra 243, 2001, pp. 615-630. MR**2002i:18010****[DS95]**W.G. Dwyer and J. Spalinski,*Homotopy theories and model categories*, Handbook of algebraic topology (Amsterdam), North-Holland, Amsterdam, 1995, pp. 73-126. MR**96h:55014****[BBE00]**L. Bican, R. El Bashir, and E. Enochs,*All modules have flat covers*, Bull. London Math. Soc. 33, 2001, pp. 385-390.MR**2002e:16002****[ET99]**Paul C. Eklof and Jan Trlifaj,*How to make Ext vanish*, Bull. London Math. Soc. 33, 2001, pp. 41-51. MR**2001i:16015****[EEGO]**E. Enochs, S. Estrada, J.R. García-Rozas, and L. Oyonarte,*Flat covers of quasi-coherent sheaves*, preprint, 2000.**[EJ01]**E. Enochs and O. Jenda,*Relative homological algebra*, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2001. MR**2001h:16013****[EO01]**E. Enochs and L. Oyonarte,*Flat covers and cotorsion envelopes of sheaves*, Proceedings of the American Mathematical Society vol. 130, no. 5, 2001, pp. 1285-1292. MR**2003d:18023****[EGR97]**E. Enochs and J.R. García-Rozas,*Tensor products of chain complexes*, Math J. Okayama Univ. 39, 1997, pp. 19-42. MR**2001b:16006****[GR99]**J. R. García-Rozas,*Covers and envelopes in the category of complexes of modules*, Research Notes in Mathematics no. 407, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR**2001i:16009****[Gri99]**Pierre Antoine Grillet,*Algebra*, Pure and Applied Mathematics, John Wiley & Sons, New York, 1999. MR**2000g:20001****[Hov00]**Mark Hovey,*Cotorsion theories, model category structures, and representation theory*, preprint, 2000.**[Hov99]**Mark Hovey,*Model categories*, Mathematical Surveys and Monographs vol. 63, American Mathematical Society, 1999. MR**99h:55031****[Joy84]**A. Joyal, Letter to A. Grothendieck, 1984.**[Mac71]**Saunders MacLane,*Categories for the working mathematician*, Graduate Texts in Mathematatics vol. 5, Springer-Verlag, New York, second edition, 1998. MR**2001j:18001****[Qui67]**Daniel G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics no. 43, Springer-Verlag, 1967. MR**36:6480****[Sal79]**L. Salce,*Cotorsion theories for abelian groups*, Symposia Math. 23, 1979. MR**81j:20078****[Spa66]**Edwin H. Spanier,*Algebraic Topology*, McGraw-Hill series in higher mathematics, McGraw-Hill, New York, 1966. MR**35:1007****[Wis91]**Robert Wisbauer,*Foundations of module and ring theory*, Algebra, Logic and Applications series vol. 3, Gordon and Breach Science Publishers,1991. MR**92i:16001****[Xu96]**Jinzhong Xu,*Flat covers of modules*, Lecture Notes in Mathematics no. 1634, Springer-Verlag, Berlin, 1996. MR**98b:16003**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
55U35,
18G35,
18G15

Retrieve articles in all journals with MSC (2000): 55U35, 18G35, 18G15

Additional Information

**James Gillespie**

Affiliation:
Department of Mathematics, 4000 University Drive, Penn State–McKeesport, McKeesport, Pennsylvania 15132-7698

Email:
jrg21@psu.edu

DOI:
https://doi.org/10.1090/S0002-9947-04-03416-6

Received by editor(s):
October 1, 2002

Received by editor(s) in revised form:
May 13, 2003

Published electronically:
January 29, 2004

Additional Notes:
The author thanks Mark Hovey of Wesleyan University

Article copyright:
© Copyright 2004
American Mathematical Society