The flat model structure on
Author:
James Gillespie
Translated by:
Journal:
Trans. Amer. Math. Soc. 356 (2004), 33693390
MSC (2000):
Primary 55U35, 18G35, 18G15
Published electronically:
January 29, 2004
MathSciNet review:
2052954
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Given a cotorsion pair in an abelian category with enough objects and enough objects, we define two cotorsion pairs in the category of unbounded chain complexes. We see that these two cotorsion pairs are related in a nice way when is hereditary. We then show that both of these induced cotorsion pairs are complete when is the ``flat'' cotorsion pair of modules. This proves the flat cover conjecture for (possibly unbounded) chain complexes and also gives us a new ``flat'' model category structure on . In the last section we use the theory of model categories to show that we can define using a flat resolution of and a cotorsion coresolution of .
 [Ald01]
S.
Tempest Aldrich, Edgar
E. Enochs, J.
R. García Rozas, and Luis
Oyonarte, Covers and envelopes in Grothendieck categories: flat
covers of complexes with applications, J. Algebra 243
(2001), no. 2, 615–630. MR 1850650
(2002i:18010), http://dx.doi.org/10.1006/jabr.2001.8821
 [DS95]
W.
G. Dwyer and J.
Spaliński, Homotopy theories and model categories,
Handbook of algebraic topology, NorthHolland, Amsterdam, 1995,
pp. 73–126. MR 1361887
(96h:55014), http://dx.doi.org/10.1016/B9780444817792/500031
 [BBE00]
L.
Bican, R.
El Bashir, and E.
Enochs, All modules have flat covers, Bull. London Math. Soc.
33 (2001), no. 4, 385–390. MR 1832549
(2002e:16002), http://dx.doi.org/10.1017/S0024609301008104
 [ET99]
Paul
C. Eklof and Jan
Trlifaj, How to make Ext vanish, Bull. London Math. Soc.
33 (2001), no. 1, 41–51. MR 1798574
(2001i:16015), http://dx.doi.org/10.1112/blms/33.1.41
 [EEGO]
E. Enochs, S. Estrada, J.R. GarcíaRozas, and L. Oyonarte, Flat covers of quasicoherent sheaves, preprint, 2000.
 [EJ01]
Edgar
E. Enochs and Overtoun
M. G. Jenda, Relative homological algebra, de Gruyter
Expositions in Mathematics, vol. 30, Walter de Gruyter & Co.,
Berlin, 2000. MR
1753146 (2001h:16013)
 [EO01]
Edgar
Enochs and Luis
Oyonarte, Flat covers and cotorsion envelopes of
sheaves, Proc. Amer. Math. Soc.
130 (2002), no. 5,
1285–1292. MR 1879949
(2003d:18023), http://dx.doi.org/10.1090/S0002993901061901
 [EGR97]
Edgar
E. Enochs and J.
R. García Rozas, Tensor products of complexes, Math. J.
Okayama Univ. 39 (1997), 17–39 (1999). MR 1680739
(2001b:16006)
 [GR99]
J.
R. García Rozas, Covers and envelopes in the category of
complexes of modules, Chapman & Hall/CRC Research Notes in
Mathematics, vol. 407, Chapman & Hall/CRC, Boca Raton, FL, 1999.
MR
1693036 (2001i:16009)
 [Gri99]
Pierre
Antoine Grillet, Algebra, Pure and Applied Mathematics (New
York), John Wiley & Sons, Inc., New York, 1999. A WileyInterscience
Publication. MR
1689024 (2000g:20001)
 [Hov00]
Mark Hovey, Cotorsion theories, model category structures, and representation theory, preprint, 2000.
 [Hov99]
Mark
Hovey, Model categories, Mathematical Surveys and Monographs,
vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
(99h:55031)
 [Joy84]
A. Joyal, Letter to A. Grothendieck, 1984.
 [Mac71]
Saunders
Mac Lane, Categories for the working mathematician, 2nd ed.,
Graduate Texts in Mathematics, vol. 5, SpringerVerlag, New York,
1998. MR
1712872 (2001j:18001)
 [Qui67]
Daniel
G. Quillen, Homotopical algebra, Lecture Notes in Mathematics,
No. 43, SpringerVerlag, BerlinNew York, 1967. MR 0223432
(36 #6480)
 [Sal79]
Luigi
Salce, Cotorsion theories for abelian groups, Symposia
Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the
Theory of Modules, INDAM, Rome, 1977) Academic Press, LondonNew York,
1979, pp. 11–32. MR 565595
(81j:20078)
 [Spa66]
Edwin
H. Spanier, Algebraic topology, McGrawHill Book Co., New
YorkToronto, Ont.London, 1966. MR 0210112
(35 #1007)
 [Wis91]
Robert
Wisbauer, Foundations of module and ring theory, Revised and
translated from the 1988 German edition, Algebra, Logic and Applications,
vol. 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
A handbook for study and research. MR 1144522
(92i:16001)
 [Xu96]
Jinzhong
Xu, Flat covers of modules, Lecture Notes in Mathematics,
vol. 1634, SpringerVerlag, Berlin, 1996. MR 1438789
(98b:16003)
 [Ald01]
 S. Tempest Aldrich, Edgar E. Enochs, Luis Oyonarte, and J.R. GarcíaRozas, Covers and envelopes in Grothendieck categories: flat covers of complexes with applications, Journal of Algebra 243, 2001, pp. 615630. MR 2002i:18010
 [DS95]
 W.G. Dwyer and J. Spalinski, Homotopy theories and model categories, Handbook of algebraic topology (Amsterdam), NorthHolland, Amsterdam, 1995, pp. 73126. MR 96h:55014
 [BBE00]
 L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33, 2001, pp. 385390.MR 2002e:16002
 [ET99]
 Paul C. Eklof and Jan Trlifaj, How to make Ext vanish, Bull. London Math. Soc. 33, 2001, pp. 4151. MR 2001i:16015
 [EEGO]
 E. Enochs, S. Estrada, J.R. GarcíaRozas, and L. Oyonarte, Flat covers of quasicoherent sheaves, preprint, 2000.
 [EJ01]
 E. Enochs and O. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics no. 30, Walter De Gruyter, New York, 2001. MR 2001h:16013
 [EO01]
 E. Enochs and L. Oyonarte, Flat covers and cotorsion envelopes of sheaves, Proceedings of the American Mathematical Society vol. 130, no. 5, 2001, pp. 12851292. MR 2003d:18023
 [EGR97]
 E. Enochs and J.R. GarcíaRozas, Tensor products of chain complexes, Math J. Okayama Univ. 39, 1997, pp. 1942. MR 2001b:16006
 [GR99]
 J. R. GarcíaRozas, Covers and envelopes in the category of complexes of modules, Research Notes in Mathematics no. 407, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 2001i:16009
 [Gri99]
 Pierre Antoine Grillet, Algebra, Pure and Applied Mathematics, John Wiley & Sons, New York, 1999. MR 2000g:20001
 [Hov00]
 Mark Hovey, Cotorsion theories, model category structures, and representation theory, preprint, 2000.
 [Hov99]
 Mark Hovey, Model categories, Mathematical Surveys and Monographs vol. 63, American Mathematical Society, 1999. MR 99h:55031
 [Joy84]
 A. Joyal, Letter to A. Grothendieck, 1984.
 [Mac71]
 Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematatics vol. 5, SpringerVerlag, New York, second edition, 1998. MR 2001j:18001
 [Qui67]
 Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics no. 43, SpringerVerlag, 1967. MR 36:6480
 [Sal79]
 L. Salce, Cotorsion theories for abelian groups, Symposia Math. 23, 1979. MR 81j:20078
 [Spa66]
 Edwin H. Spanier, Algebraic Topology, McGrawHill series in higher mathematics, McGrawHill, New York, 1966. MR 35:1007
 [Wis91]
 Robert Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications series vol. 3, Gordon and Breach Science Publishers,1991. MR 92i:16001
 [Xu96]
 Jinzhong Xu, Flat covers of modules, Lecture Notes in Mathematics no. 1634, SpringerVerlag, Berlin, 1996. MR 98b:16003
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55U35,
18G35,
18G15
Retrieve articles in all journals
with MSC (2000):
55U35,
18G35,
18G15
Additional Information
James Gillespie
Affiliation:
Department of Mathematics, 4000 University Drive, Penn State–McKeesport, McKeesport, Pennsylvania 151327698
Email:
jrg21@psu.edu
DOI:
http://dx.doi.org/10.1090/S0002994704034166
PII:
S 00029947(04)034166
Received by editor(s):
October 1, 2002
Received by editor(s) in revised form:
May 13, 2003
Published electronically:
January 29, 2004
Additional Notes:
The author thanks Mark Hovey of Wesleyan University
Article copyright:
© Copyright 2004
American Mathematical Society
