NONLINEARIZABLE ACTIONS OF DIHEDRAL GROUPS
ON AFFINE SPACE

KAYO MASUDA

Abstract. Let G be a reductive, non-abelian, algebraic group defined over \mathbb{C}. We investigate algebraic G-actions on the total spaces of non-trivial algebraic G-vector bundles over G-modules with great interest in the case that G is a dihedral group. We construct a map classifying such actions of a dihedral group in some cases and describe the spaces of those non-linearizable actions in some examples.

1. Introduction

Let G be a reductive complex algebraic group. When G is non-abelian, it is well-known that there exist non-linearizable actions of G on complex affine space \mathbb{A}^n for $n \geq 4$, i.e., algebraic actions of G on \mathbb{A}^n which are not conjugate to linear actions under polynomial automorphisms of \mathbb{A}^n. It is remarkable that non-linearizable actions on \mathbb{A}^n known so far are all obtained from non-trivial algebraic G-vector bundles over G-modules. An algebraic G-vector bundle over a G-variety X is defined to be an algebraic vector bundle $p : E \to X$, where E is a G-variety, the projection p is G-equivariant, and the morphism induced by $g \in G$ from $p^{-1}(x)$ to $p^{-1}(gx)$ is linear for all g and $x \in X$. An algebraic G-vector bundle is called trivial if it is isomorphic to a product bundle $X \times Q \to X$ for some G-module Q. A total space of an algebraic G-vector bundle over a G-module is an affine space by the affirmative solution to the Serre conjecture by Quillen [19] and Suslin [21]. Thus, the G-action on a total space E of a non-trivial G-vector bundle over a G-module is a candidate for a non-linearizable action on affine space. There are a couple of known conditions for such an action to be non-linearizable (Bass and Haboush [1], M. Masuda and Petrie [15]). Schwarz [20] (Kraft and Schwarz [7] for details) first showed that an algebraic G-vector bundle over a G-module can be non-trivial when the algebraic quotient of P is of one dimension, and that there exist families of non-linearizable actions on affine space, by using the above conditions. After Schwarz, lots of examples of non-trivial algebraic G-vector bundles have been presented, and it turns out that many of the G-actions on their total spaces are non-linearizable (Knop [5], M. Masuda, Moser-Jauslin and Petrie [11], M. Masuda and Petrie [16]). For abelian groups, there are no known examples of non-linearizable actions on complex affine space. In fact, for an abelian group G, every algebraic G-vector bundle over
a G-module becomes trivial by the result of M. Masuda, Moser-Jauslin and Petrie [12], so, we cannot obtain non-linearizable actions from G-vector bundles. There are some affirmative results for the linearizability for torus actions (e.g. Bialynicki-Birula [2], Kaliman, Koras, Makar-Limanov and Russell [11]); however, it remains open whether or not every algebraic action of an abelian group on \mathbb{A}^n ($n \geq 4$) is linearizable. Especially for a finite abelian group G, e.g. for a cyclic group $\mathbb{Z}/n\mathbb{Z}$, we never know even whether any G-action on \mathbb{A}^3 is linearizable or not.

For finite groups, M. Masuda and Petrie [11] showed that there exists a family of non-linearizable actions of a dihedral group $D_n = \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ for n even and ≥ 18 on \mathbb{A}^3. They considered D_n-actions derived from algebraic D_n-vector bundles which become trivial by adding certain trivial bundles, and showed that those actions form a family in some cases. Later, Mederer [13] showed that non-trivial algebraic D_n-vector bundles form a huge family of infinite dimension for n odd and ≥ 3. In this article, we investigate G-actions derived from non-trivial algebraic G-vector bundles. We are most interested in the case that G is a dihedral group. We present a new condition for such D_n-actions to be non-linearizable and construct a map which classifies such non-linearizable D_n-actions without imposing triviality on D_n-vector bundles under the addition of certain trivial bundles. We also describe the spaces of those non-linearizable D_n-actions in some examples.

2. Families of non-linearizable actions

Let G be a reductive, non-abelian algebraic group and let Z be an affine G-variety. We denote by $\mathbb{C}[Z]$ the coordinate ring of Z and by $\mathbb{C}[Z]^G$ the ring of invariants. The algebraic quotient $Z//G$ is the affine variety defined by $Z//G = \text{Spec} \mathbb{C}[Z]^G$ and the quotient morphism $\pi_Z : Z \to Z//G$ is the morphism corresponding to the inclusion $\mathbb{C}[Z]^G \hookrightarrow \mathbb{C}[Z]$. Let P and Q be G-modules and let $X \subset P$ be a G-subvariety containing the origin of P. We denote by $\text{Vec}_G(X,Q)$ the set of algebraic G-vector bundles over X whose fiber over the origin is isomorphic to Q, and by $\text{Vec}_G(X,Q)$ the set of G-isomorphism classes in $\text{Vec}_G(X,Q)$. An element $E \to X$ of $\text{Vec}_G(X,Q)$ is represented by the total space E, and the isomorphism class of $E \in \text{Vec}_G(X,Q)$ is denoted by $[E]$. The set $\text{Vec}_G(X,Q)$ is called trivial if $\text{Vec}_G(X,Q)$ consists of the unique class $[\Theta_Q]$, where Θ_Q denotes the product bundle with fiber Q. When $\dim P//G = 1$, Schwarz [20] showed that $\text{Vec}_G(P,Q)$ has an additive group structure and is isomorphic to a vector group \mathbb{C}^q for a non-negative integer q. Mederer [13] (cf. [9]) extended the result of Schwarz to the case where the base space is a G-equivariant affine cone X with $\dim X//G = 1$. When $\dim P//G \geq 2$, $\text{Vec}_G(P,Q)$ can be non-trivial and of countably or uncountably infinite dimension ([9], [11], [18]).

We assume that $\text{Vec}_G(P,Q)$ is non-trivial. Let $E \in \text{Vec}_G(P,Q)$. The following are the known conditions for the G-action on the total space E to be non-linearizable.

Proposition 2.1. Let $E, E' \in \text{Vec}_G(P,Q)$.

1. ([15]) Suppose that there exists a subgroup H of G such that $(P \oplus Q)^H = P$. Then E and E' are isomorphic as G-varieties if and only if E and the pull-back φ^*E' are isomorphic as G-vector bundles for some G-automorphism φ of P.

2. ([11]) If the Whitney sum $E \oplus \Theta_P$ is non-trivial, then the G-action on E is non-linearizable.
Let $\text{VAR}_G(P, Q)$ be the set of G-isomorphism classes of affine G-spaces represented as the total spaces of elements of $\text{Vec}_G(P, Q)$. The group $\text{Aut}(P)^G$ of G-equivariant automorphisms of P acts on $\text{Vec}_G(P, Q)$ by pull-backs. There exists a surjection Ψ from the orbit space of $\text{Vec}_G(P, Q)$ under the action of $\text{Aut}(P)^G$ to $\text{VAR}_G(P, Q)$. Under the assumption in Proposition 2.1 (1), Ψ is an isomorphism.

Example 2.1. Let $G = O(2) = \mathbb{C}^* \rtimes \mathbb{Z}/2\mathbb{Z}$ and let V_m ($m \geq 1$) be a two-dimensional $O(2)$-module such that

$$\lambda(x, y) = (\lambda^m x, \lambda^{-m} y) \quad \text{for} \quad \lambda \in \mathbb{C}^*,$$

$$\tau(x, y) = (y, x) \quad \text{for the generator} \quad \tau \in \mathbb{Z}/2\mathbb{Z}.$$

Then $V_m/O(2) = \text{Spec} \mathbb{C}[t] = \mathbb{A}^1$, where $t = xy$, and $\text{Aut}(V_m)^G = \mathbb{C}^*$, namely, $\text{Aut}(V_m)^G$ consists of scalar multiplications.

Let n be odd. Then $\text{Vec}_G(V_2, V_n) \cong \mathbb{C}^{(n-1)/2}$ and the Whitney sum with Θ_{V_2} induces an isomorphism between $\text{Vec}_G(V_2, V_n)$ and $\text{Vec}_G(V_2, V_n \oplus V_2)$ ([20]). By Proposition 2.1 (1) or (2), if $E \in \text{Vec}_{O(2)}(V_2, V_n)$ is non-trivial, then the $O(2)$-action on E is non-linearizable. We shall describe $\text{VAR}_{O(2)}(V_2, V_n)$. Since $(V_2 \oplus V_n)^{\mathbb{Z}/2\mathbb{Z}} = V_2$, where $\mathbb{Z}/2\mathbb{Z}$ is a subgroup of $\mathbb{C}^* \subset O(2)$, it follows from Proposition 2.1 (1) that

$$\text{VAR}_{O(2)}(V_2, V_n) \cong \text{Vec}_{O(2)}(V_2, V_n)/\mathbb{C}^*.$$

In order to look at the action of $\text{Aut}(V_2)^G = \mathbb{C}^*$ on $\text{Vec}_G(V_2, V_n)$, recall the isomorphism $\text{Vec}_G(V_2, V_n) \cong \mathbb{C}^{(n-1)/2}$. For the details, we refer to Kraft and Schwarz [7]. Let $F = \pi_{V_2}^{-1}(1)$, which is the G-subvariety of V_2 defined by $xy = 1$. Then $F \cong G/H$, where $H = \mathbb{Z}/2\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, and V_n is multiplicity-free with respect to H, namely, each irreducible H-module occurs in V_n with multiplicity at most one when V_n is viewed as an H-module. We set $m = \text{Mor}(F, \text{End} V_n)^G$, the module of G-equivariant morphisms from F to $\text{End} V_n$. Let $B = \text{Spec} \mathbb{C}[t]$ be the double cover of $\mathbb{A}^1 = \text{Spec} \mathbb{C}[t]$, where $s^2 = t$. Then the group $\Gamma := \{\pm 1\}$ acts on B and on F by scalar multiplication. We denote by $B \times_\Gamma F$ the quotient of $B \times F$ by Γ which acts by $(b, f) \mapsto (b\gamma, \gamma^{-1}f)$ for $\gamma \in \Gamma$, $b \in B$, and $f \in F$. The group G acts on $B \times_\Gamma F$ through F. We define a G-equivariant morphism φ by

$$\varphi : B \times_\Gamma F \rightarrow V_2, \quad [b, f] \mapsto bf.$$

which is a G-isomorphism from $(B - \{0\}) \times_\Gamma F$ onto $V_2 - \pi_{V_2}^{-1}(0)$. Note that $\mathbb{C}[B \times_\Gamma F]^G \cong \mathbb{C}[B]^G = \mathbb{C}[t] = \mathbb{C}[V_2]^G$. The morphism φ induces a homomorphism

$$\varphi_# : \text{Mor}(V_2, \text{End} V_n)^G \rightarrow \text{Mor}(B \times_\Gamma F, \text{End} V_n)^G = \text{Mor}(B, \mathfrak{m})^F =: \mathfrak{m}(B)^F.$$

The modules $\text{Mor}(V_2, \text{End} V_n)^G$ and $\mathfrak{m}(B)^F$ are finite free modules over $\mathbb{C}[t]$. In fact, a basis of $\text{Mor}(V_2, \text{End} V_n)^G \cong (\mathbb{C}[V_2] \otimes \text{End} V_n)^G$ over $\mathbb{C}[t]$ is written in a matrix form as

$$\begin{cases}
A_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
A_1 = \begin{pmatrix} 0 & x^n \\ y^n & 0 \end{pmatrix}
\end{cases}$$

and a basis of $\mathfrak{m}(B)^F \cong (\mathbb{C}[s] \otimes \mathfrak{m})^F$ over $\mathbb{C}[t]$ is

$$\begin{cases}
C_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},
C_1 = s(A_1|_F)
\end{cases}.$$
The module $\text{Mor}(V_2, \text{End} V_n)^G$ (resp. $\text{m}(\mathbb{B})^\Gamma$) inherits a grading from $\mathbb{C}[V_2]$ (resp. $\mathbb{C}[s]$), and φ_* is a homomorphism of degree 0. Let $\text{Mor}(V_2, \text{End} V_n)^G$ (resp. $\text{m}(\mathbb{B})^\Gamma$) be the submodule of $\text{Mor}(V_2, \text{End} V_n)$ (resp. $\text{m}(\mathbb{B})$) consisting of elements with positive degrees. Then $\text{Vec}_G(V_2, V_n)$ is isomorphic to the quotient module $\text{m}(\mathbb{B})^\Gamma/\varphi_* \text{Mor}(V_2, \text{End} V_n)^G$. Since

$$\varphi_*(A_0) = C_0 \quad \text{and} \quad \varphi_*(A_1) = t^{\frac{n-1}{2}} C_1,$$

the set $\{t^{i-1}C_1; 1 \leq i \leq \frac{n-1}{2}\}$ forms a \mathbb{C}-basis of $\text{m}(\mathbb{B})^\Gamma/\varphi_* \text{Mor}(V_2, \text{End} V_n)^G$, and hence

$$\text{Vec}_G(V_2, V_n) \cong \text{m}(\mathbb{B})^\Gamma/\varphi_* \text{Mor}(V_2, \text{End} V_n)^G \cong \mathbb{C}^{\frac{n-1}{2}}.$$

Note that $\text{deg}(t^{i-1}C_1) = 2i - 1$. The scalar multiplication on V_2 corresponds to a scalar multiplication on \mathbb{B} via φ. Hence $\text{Vec}_G(V_2, V_n) \cong \bigoplus_{i=1}^{(n-1)/2} W(2i - 1)$ as a module of $\text{Aut}(V_2)^G = \mathbb{C}^*$, where $W(i)$ denotes the representation space of \mathbb{C}^* with weight i. Thus we obtain by Proposition 2.1 (1) that

$$\text{VAR}_{O(2)}(V_2, V_n) \cong \left(\bigoplus_{i=1}^{(n-1)/2} W(2i - 1) \right) / \mathbb{C}^* \cong \mathbb{P}_s(2i - 1; 1 \leq i \leq \frac{n-1}{2}).$$

Here $\mathbb{P}_s(2i - 1; 1 \leq i \leq (n - 1)/2)$ consists of the “vertex” \star, and the weighted projective space $\mathbb{P}(2i - 1; 1 \leq i \leq (n - 1)/2)$ of dimension $(n - 3)/2$ with weight $2i - 1$ for $1 \leq i \leq (n - 1)/2$. The “vertex” corresponds to the linearizable action and the weighted projective space to non-linearizable actions (cf. [16]).

Example 2.2. Let $G = \text{SL}_2$ and let R_n be the SL_2-module of binary forms of degree $n \geq 1$. Then $\text{Vec}_G(R_2, R_{n}) \cong \mathbb{C}^{[(n-1)^2/4]}$ and $\text{Aut}(R_2)^G = \mathbb{C}^*$ ([20], [7]). As a module of $\mathbb{C}^* = \text{Aut}(R_2)^G$, $\text{Vec}_G(R_2, R_n)$ is isomorphic to $\bigoplus_{i=1}^{n-2} m_i W(i)$ with multiplicity $m_i = \lfloor \frac{mi}{2} \rfloor$. Suppose n is odd. Then $(R_2 \oplus R_n)^{2n/2n} = R_2$. Hence by Proposition 2.1 (1),

$$\text{VAR}_{\text{SL}_2}(R_2, R_n) \cong \left(\bigoplus_{i=1}^{n-2} m_i W(i) \right) / \mathbb{C}^* \cong \mathbb{P}_s(i, m_i; 1 \leq i \leq n - 2).$$

In this case, the space of non-linearizable SL_2-actions is isomorphic to the weighted projective space of dimension $[(n - 1)^2/4] - 1$ with weight i of multiplicity m_i for $1 \leq i \leq n - 2$.

Example 2.3. Let G be semisimple and let \mathfrak{g} be the adjoint representation of G. Let Σ be a system of simple roots of G and F an irreducible G-module with the highest weight χ. Knop [5] constructed a map associated with $\alpha \in \Sigma$,

$$\Phi_\alpha : \text{Vec}_G(\mathfrak{g}, F) \to \text{Vec}_{\text{SL}_2}(R_2, R_m),$$

where $m = \langle \chi, \alpha \rangle$. The map Φ_α is surjective if the α-string of χ is regular ([5], [4]). We recall the construction of Φ_α. Let $T \subset G$ be a maximal torus with the Lie algebra $\mathfrak{t} \subset \mathfrak{g}$. Let L be the subgroup of G generated by T and the root subgroups U_α and $U_{-\alpha}$. We denote by L' the commutator subgroup of L and by Z the center of L. Then $L = L/Z$, and L' is isomorphic to SL_2 or SO_3. Let \mathfrak{l} be the Lie algebra of L. Then \mathfrak{l} is isomorphic to $\mathfrak{sl}_2 \oplus \mathbb{C}^{n-1}$ as an L'-module,
where \(n = \text{rank } \mathfrak{t} \). For \(E \in \text{Vec}_G(\mathfrak{g}, F) \), the restricted bundle \(E|_i \) is an \(L \)-vector bundle with fiber \(F' \) which is \(F \) viewed as an \(L \)-module. Take a \(\xi_0 \in \mathfrak{t} \) so that the centralizer of \(\xi_0 \) is exactly \(L \), and fix it. Then \(\mathfrak{a} := \xi_0 + \text{Lie} L' \subseteq \mathfrak{g} \) is \(L \)-stable and isomorphic to \(\mathfrak{sl}_2 \cong R_2 \) as an \(L' \)-variety. Since \(Z \) acts trivially on \(\mathfrak{t} \), hence on \(\mathfrak{a} \), \(E|_a \) decomposes to a Whitney sum of eigenbundles of \(Z \). Let \((E|_a)_\chi \) be the eigenbundle corresponding to the restricted weight of \(\chi \) onto \(Z \). Then the \(L' \)-vector bundle \((E|_a)_\chi \) is considered as an element of \(\text{Vec}_{SL_2}(R_2, R_m) \). The map \(\Phi_\alpha \) is defined by \(\Phi_\alpha(E) = (E|_a)_\chi \). By the construction of \(\Phi_\alpha \), \(\Phi_\alpha \) decomposes to the maps

\[
\phi_\alpha : \text{Vec}_G(\mathfrak{g}, F) \to \text{Vec}_L(1, F') \to \text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)
\]

and

\[
\phi_{\xi_0} : \text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m) \to \text{Vec}_{SL_2}(R_2, R_m).
\]

From the choice of \(\xi_0 \), \(\phi_{\xi_0} \) is surjective. In fact, \(\phi_{\xi_0} \circ pr^* = id \), where

\[
pr^* : \text{Vec}_{SL_2}(R_2, R_m) \to \text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)
\]

is the induced map from the projection \(R_2 \oplus \mathbb{C}^{n-1} \to R_2 \). When \(\Phi_\alpha \) is surjective, \(\phi_\alpha \) is also surjective since \(\phi_{\xi_0} \) is surjective. By \([9]\),

\[
\text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m) \cong \text{Vec}_{SL_2}(R_2, R_m) \otimes_{\mathbb{C}} \mathbb{C}[\mathbb{C}^{n-1}].
\]

Hence we obtain the following.

Theorem 2.2. Under the notionation above, if the \(\alpha \)-string of \(\chi \) is regular, then

\[
\phi_\alpha : \text{Vec}_G(\mathfrak{g}, F) \to \text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)
\]

\[
\cong \mathbb{C}^{(m-1)^2/4} \otimes_{\mathbb{C}} \mathbb{C}[y_1, \ldots, y_{n-1}]
\]

is surjective. Furthermore, if there is a subgroup \(H \) such that \((\mathfrak{g} \oplus F)^H = \mathfrak{g} \), then \(\phi_\alpha \) induces a surjection

\[
\text{VAR}_G(\mathfrak{g}, F) \to (\mathbb{C}^{(m-1)^2/4} \otimes_{\mathbb{C}} \mathbb{C}[y_1, \ldots, y_{n-1}]) / \mathbb{C}^*
\]

where \(\mathbb{C}^* \) acts on \(\mathbb{C}^{(m-1)^2/4} \) with weight \(i \) of multiplicity \(m_i = [(m - i)/2] \) and on \(y_i \) with weight 1.

Proof. The first assertion follows from the above observation. For the second assertion, note that \(\text{Aut}(\mathfrak{g})^G = \mathbb{C}^* \) \([7]\). From Proposition 2.1 (1), there is an isomorphism \(\text{VAR}_G(\mathfrak{g}, F) \cong \text{Vec}_G(\mathfrak{g}, F)/\mathbb{C}^* \). Hence \(\phi_\alpha \) induces a surjection

\[
\text{VAR}_G(\mathfrak{g}, F) \to \text{Vec}_{SL_2}(R_2 \oplus \mathbb{C}^{n-1}, R_m)/\mathbb{C}^*.
\]

The assertion follows from the statement in Example 2.2. \(\square \)

Remark. When the \(\alpha \)-string of \(\chi \) is singular, the image of \(\Phi_\alpha \) contains a subspace of dimension \([m/2][(m/2) - 1]/2 \) \([11]\).

By Theorem 2.2 and its remark, \(\text{Vec}_G(\mathfrak{g}, F) \) is of infinite dimension if \(m \geq 4 \) and \(n \geq 2 \). Furthermore, if \((\mathfrak{g} \oplus F)^H = \mathfrak{g} \) for a subgroup \(H \), then \(\text{VAR}_G(\mathfrak{g}, F) \) is of infinite dimension.

Now, we give a new condition for the \(G \)-action on \(E \in \text{Vec}_G(P, Q) \) to be non-linearizable, which is used as a basic fact in the next section.

Proposition 2.3. Let \(E, E' \in \text{Vec}_G(P, Q) \). Suppose that there exist reductive subgroups \(H \) and \(K \) such that \(H \subset K \) and satisfying the following conditions;

1. \(Q^K = Q^H \).
2. \(\dim P^H = 1 \) and \(\dim P^K = 0 \).
If \(E \cong E' \) as \(G \)-varieties, then the restricted bundles \(E|_X \) and \((c^* E')|_X \) are isomorphic as \(G \)-vector bundles, where \(X = G \cdot P^H \) and \(c \) is a scalar multiplication on \(P \). In particular, if \(E|_X \) is a non-trivial \(G \)-vector bundle, then the \(G \)-action on \(E \) is non-linearizable.

Proof. Let \(\phi : E \cong E' \) be an isomorphism of \(G \)-varieties. Then \(\phi \) restricts to an isomorphism \(\phi_H : E^H \cong E'^H \). Since \(E^H \) and \(E'^H \) are trivial \((H-) \)vector bundles over \(P^H \) with fiber \(Q^H \) (cf. [8]), it follows that \(E^H \cong E'^H \cong P^H \times Q^H \). Similarly, \(E^K \cong E'^K \cong Q^K = Q^H \) since \(\dim Q^K = 0 \). Since \(E^K \) (resp. \(E'^K \)) is a subbundle of \(E^H \) (resp. \(E'^H \)), we get \(E^H = E^K \times P^H \) and \(E'^H = E'^K \times P^H \). Let \(x \) be a coordinate variable of \(P^H \times Q^H \) such that \(P^H = \text{Spec} \mathbb{C}[x] \). Then the ideal corresponding to \(E^K \) is \((x)\), and the ideal for \(E'^K \) is the same. Since \(\phi \), hence \(\phi_H \), maps \(E^K \) to \(E'^K \) isomorphically, the ideal \((x)\) must be fixed by the algebra isomorphism corresponding to \(\phi_H \). This implies that \(\phi_H \), hence \(\phi \), induces an isomorphism \(\bar{c} \) on \(P^H \) such that \(p_H^t \circ \phi_H = \bar{c} \circ p_H \), where \(p_H : E^H \to P^H \) and \(p_H^t : E'^H \to P^H \) are projections. Note that \(\bar{c} \) is a scalar multiplication on \(P^H \). Hence \(\bar{c} \) extends to a scalar multiplication \(c \) on \(P \). Since the following diagram commutes, \(\phi \) restricts to a variety isomorphism \(E|_{P^H} \cong E'|_{P^H} \):

\[
\begin{array}{ccc}
E & \xrightarrow{\phi} & E' \\
\downarrow & & \downarrow \\
E^H & \xrightarrow{\phi_H} & E'^H \\
\downarrow & & \downarrow \\
P^H & \xrightarrow{c} & P^H
\end{array}
\]

where the diagonal arrows are inclusions. Furthermore, since \(\phi \) is a \(G \)-isomorphism, \(\phi \) in fact restricts to a \(G \)-isomorphism \(\phi_X : E|_X \to E'|_X \) such that \(p_X \circ \phi_X = (c|_X) \circ p_X \), where \(p_X : E|_X \to X \) and \(p_X^t : E'|_X \to X \) are projections. Thus \(E|_X \cong (c^* E')|_X \) as \(G \)-vector bundles, and the assertion follows. \(\square \)

Proposition 2.3 enables us to classify elements of \(\text{VAR}_G(P, Q) \).

Corollary 2.4. Under the assumption and notation in Proposition 2.3, there exists a map

\[
\Phi : \text{VAR}_G(P, Q) \to \text{Vec}_G(X, Q)/\mathbb{C}^*,
\]

where the target space is the orbit space of \(\text{Vec}_G(X, Q) \) under the action of \(\mathbb{C}^* \), which is a subgroup of \(\text{Aut}(X)^G \) consisting of scalar multiplications.

When \(H \) is an isotropy group of a point \(x \in P \) whose orbit is closed, then \(X = \overline{G \cdot P^H} \) is a \(G \)-equivariant affine cone in \(P \) with \(\dim X/\overline{G} = 1 \). In this case, \(\text{Vec}_G(X, Q) \) is isomorphic to a finite-dimensional module of \(\mathbb{C}^* \subset \text{Aut}(X)^G \) ([13]). Hence \(\text{Vec}_G(X, Q)/\mathbb{C}^* \) is isomorphic to a weighted projective space with a “vertex”.

Example 2.4. Let \(G = O(2) \) and consider \(\text{Vec}_{O(2)}(V_1, V_m) \). Then applying Proposition 2.3 for \(H = \mathbb{Z}/2\mathbb{Z} \) (the reflection subgroup) and \(K = \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), we obtain \(X = V_1 \), and hence, a map \(\text{VAR}_{O(2)}(V_1, V_m) \to \text{Vec}_{O(2)}(V_1, V_m)/\mathbb{C}^* \), which is an isomorphism. Since \(\text{Vec}_{O(2)}(V_1, V_m) \cong \bigoplus_{i=1}^{m-1} W(2i) \) ([7]), we have
nonlinearizable actions of dihedral groups

Let G be a dihedral group $D_n = \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ for $n > 2$. By considering D_n as a finite subgroup of $O(2) = \mathbb{C}^* \rtimes \mathbb{Z}/2\mathbb{Z}$, an $O(2)$-module V_m is naturally considered as a D_n-module. Since $V_m \cong V_{n-m}$ as a D_n-module, we may assume $m \leq n/2$; otherwise $m = n$. Let k be a positive integer such that $(k, n) = 1$ and $k \leq n/2$. Let \{x, y\} be a coordinate system of V_k as in Example 2.1. Then $V_k / D_n = \text{Spec } \mathbb{C}[t, u]$, where $t = xy$ and $u = x^2 + y^n$. Let $X_k = D_n \cdot V_k^{\mathbb{Z}/2\mathbb{Z}}$, where $\mathbb{Z}/2\mathbb{Z}$ is the reflection subgroup. Then X_k is the D_n-subvariety of V_k defined by $x^n - y^n = 0$ for n odd, and $x^{n/2} - y^{n/2} = 0$ for n even. The algebraic quotient of X_k is

$$X_k / D_n = \begin{cases} \text{Spec } \mathbb{C}[t, u]/(u^2 - 4t^n) & \text{for } n \text{ odd}, \\ \text{Spec } \mathbb{C}[t] & \text{for } n \text{ even.} \end{cases}$$

The variety X_k is the D_n-equivariant affine cone in V_k with one-dimensional quotient. Hence $\text{Vec}_{D_n}(X_k, V_m) \cong \mathbb{C}^q$ for some q (cf. [18], [8]).

We shall classify elements of $\text{VAR}_{D_n}(V_k, V_m)$ under a certain condition.

Proposition 3.1. Let $E, E' \in \text{Vec}_{D_n}(V_k, V_m)$ and let X_k be as above. Suppose that $(m, n) > 1$. Then, if $E \cong E'$ as D_n-varieties, then the restricted bundles $E|_{X_k}$ and $(c^*E')|_{X_k}$ are isomorphic as D_n-vector bundles, where c is a scalar multiplication on V_k.

Proof. By taking $H = \mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and $K = \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, where $p = (m, n)$ in Proposition 2.3, the assertion follows. \qed

Under the assumption in Proposition 3.1, there exists a map

$$\Phi_{k,m} : \text{VAR}_{D_n}(V_k, V_m) \to \text{Vec}_{D_n}(X_k, V_m)/\mathbb{C}^*.$$

Let $i_k^* : \text{Vec}_{D_n}(V_k, V_m) \to \text{Vec}_{D_n}(X_k, V_m)$ be the restriction induced by the inclusion $i_k : X_k \hookrightarrow V_k$. There exists a sequence

$$\text{Vec}_{O(2)}(V_k, V_m) \xrightarrow{d_n} \text{Vec}_{D_n}(V_k, V_m) \xrightarrow{i_k^*} \text{Vec}_{D_n}(X_k, V_m),$$

where d_n is the group restriction.

Theorem 3.2 (cf. [16]). Let n be odd, and let $k = 2$ and $m = n$ in the notation above.

1. The composite map $i_2^* \circ d_n : \text{Vec}_{O(2)}(V_2, V_n) \to \text{Vec}_{D_n}(X_2, V_n)$ is injective and

$$\text{Im}(i_2^* \circ d_n) \cong \mathbb{C}^{n-1}.$$

2. The image of $\Phi_{2,n}$ is isomorphic to $\mathbb{P}_*(2i-1; 1 \leq i \leq (n-1)/2)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(3) The map $\text{VAR}_{O(2)}(V_2, V_n) \to \text{VAR}_{D_n}(V_2, V_n)$ is injective. Hence, if $E \in \text{Vec}_{O(2)}(V_2, V_n)$ is a non-trivial $O(2)$-vector bundle, then the D_n-action on E is non-linearizable.

Proof. (1) By applying the method of Mederer, we can show that $\text{Vec}_{D_n}(X_2, V_n)$ is isomorphic to a vector group \mathbb{C}^{n-1}. For the detailed argument, we refer to Mederer [15]. We shall give a basis of $\text{Vec}_{D_n}(X_2, V_n) \cong \mathbb{C}^{n-1}$. We use the notation in Example 2.1 and denote X_2 simply by X. Let $\nu : B = \text{Spec} \mathbb{C}[s] \to X//D_n = \text{Spec} \mathbb{C}[t, u]/(u^2 - 4t^n)$ be the normalization, where $t = s^2$ and $u = 2s^n$, and let $F_X = \pi_X^{-1}(\nu(1))$. Then $F_X \cong D_n/H'$, where $H' = \mathbb{Z}/2\mathbb{Z}$ (the reflection subgroup) and V_n is multiplicity free with respect to H'. There is a D_n-equivariant morphism

$$\varphi^X : B \times F_X \to X,$$

$$(b, f) \mapsto bf,$$

which is an isomorphism from $(B - \{0\}) \times F_X$ onto $X - \pi_X^{-1}(\nu(0))$. Note that the following diagram commutes:

$$
\begin{array}{ccc}
\mathbb{B} \times F_X & \xrightarrow{\varphi^X} & X \\
\downarrow & & \downarrow \\
\mathbb{B} \times F & \xrightarrow{\varphi} & V_2
\end{array}
$$

where the vertical maps are inclusions. Let $m_X = \text{Mor}(F_X, \text{End}_n V_n)$. Then $m_X(\mathbb{B}) := \text{Mor}(\mathbb{B}, m_X)$ is a free $\mathbb{C}[s]$-module with a grading induced from $\mathbb{C}[s]$. The $\mathbb{C}[X]^{D_n}$-module $\text{Mor}(X, \text{End}_n V_n)^{D_n}$, which inherits a grading from $\mathbb{C}[X] \subset \mathbb{C}[V_2]$. Note that $m_X(\mathbb{B})$ is considered as a $\mathbb{C}[X]^{D_n}$-module via ν. The morphism φ^X induces

$$\varphi^X : \text{Mor}(X, \text{End}_n V_n)^{D_n} \to \text{Mor}(\mathbb{B} \times F_X, \text{End}_n V_n)^{D_n} = m_X(\mathbb{B}),$$

which is a $\mathbb{C}[X]^{D_n}$-homomorphism of degree 0. Note that $\text{Mor}(X, \text{End}_n V_n)^{D_n}$ is a finite free module over $\mathbb{C}[X]^{D_n}$. In fact, $\text{Mor}(V_2, \text{End}_n V_n)^{D_n}$ is free over $\mathbb{C}[t, u]$ with a basis

$$\{ \tilde{A}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \tilde{A}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\begin{pmatrix} x^n - y^n \\ 0 \\ -(x^n - y^n) \end{pmatrix}, \begin{pmatrix} 0 \\ x^n - y^n \\ 0 \end{pmatrix} \}.$$

Hence $\text{Mor}(X, \text{End}_n V_n)^{D_n}$ is a free module over $\mathbb{C}[t, u]/(u^2 - 4t^n)$ with a basis $\{ \tilde{A}_0, \tilde{A}_1 \}$. Let $\text{Mor}(X, \text{End}_n V_n)^{D_n}(\text{respectively } m_X(\mathbb{B}^1))$ be the submodule of $\text{Mor}(X, \text{End}_n V_n)^{D_n}$ (respectively $m_X(\mathbb{B})$) of elements with positive degrees. Then $\text{Vec}_{D_n}(X, V_n)$ is isomorphic to the quotient module of $m_X(\mathbb{B}^1)$ by $\varphi^X : \text{Mor}(X, \text{End}_n V_n)^{D_n}$.

The module $m_X(\mathbb{B}^1)$ is free over $\mathbb{C}[s]$ with a basis

$$\{ \tilde{C}_0 = s\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \tilde{C}_1 = s\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \}.$$

Since $\varphi^X(\tilde{s}\tilde{A}_i) = s\tilde{C}_i$ and $\varphi^X(\tilde{s}\tilde{A}_i) = 2s^{n-1}\tilde{C}_i$ for $i = 0, 1$,

$$\text{Vec}_{D_n}(X, V_n) \cong m_X(\mathbb{B}^1)/\varphi^X : \text{Mor}(X, \text{End}_n V_n)^{D_n} \cong \mathbb{C}^{n-1}.$$
with a basis \(\{ s^{2(j-1)} C_i : i = 0, 1, 1 \leq j \leq (n-1)/2 \} \). The inclusions \(\mathcal{B} \times F_X \hookrightarrow \mathcal{B} \times_F F \) and \(X \hookrightarrow V_2 \) give rise to a homomorphism
\[
\iota : \mathfrak{m}(\mathcal{B})_1^F / \Phi_\# \operatorname{Mor}(V_2, \operatorname{End} V_n)^{(2)} \to \mathfrak{m}_X(\mathcal{B})_1^X / \Phi_\# \operatorname{Mor}(X, \operatorname{End} V_n)^{(2)},
\]
which corresponds to \(i_2^* \circ d_n \). Since \(\iota (t^{-1} C_1) = s^{2((n-1)/2)} C_1 \), it follows that \(i_2^* \circ d_n \) is injective and \(\operatorname{Im}(i_2^* \circ d_n) \cong \mathbb{C}^{(n-1)/2} \) with a basis \(\{ s^{2(j-1)} C_i : 1 \leq j \leq (n-1)/2 \} \).

(2) From Proposition 3.1, there is a map
\[
\Phi_{2,n} : \operatorname{VAR}_{D_n}(V_2, V_n) \to \operatorname{Vec}_{D_n}(X_2, V_n)/\mathbb{C}^*.
\]
From (1), \(\operatorname{Im} i_2^* \) contains a subspace
\[
\bigoplus_{i=1}^{(n-1)/2} W(2i-1).
\]
In fact, \(\operatorname{Im} i_2^* \cong \bigoplus_{i=1}^{(n-1)/2} W(2i-1) \) (cf. [18, III 3,4]). Hence the assertion follows.

(3) follows from (1) and Proposition 3.1.

Remark. From Theorem 3.2 (1), \(d_n : \operatorname{Vec}_{O(2)}(V_2, V_n) \to \operatorname{Vec}_{D_n}(V_2, V_n) \) is an injection.

Let \(\varepsilon \) be the 1-dimensional sign representation and let \(\varepsilon^m \) be the direct sum of \(m \) copies of \(\varepsilon \). One can show by direct calculation that the composite map \(i_2^* \circ d_n \) given by
\[
\operatorname{Vec}_{O(2)}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) \xrightarrow{d_n} \operatorname{Vec}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) \xrightarrow{i_2^*} \operatorname{Vec}_{D_n}(X_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})
\]
is an injection. In fact, since the dimensions of \(V_2//O(2) \) and \(X_2//D_n \) are both equal to 1, the map \(i_2^* \circ d_n \) is a homomorphism of \(\mathbb{C} \)-vector groups. Since the generators of the \(\mathbb{C} \)-vector group \(\operatorname{Vec}_{O(2)}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) \), which is isomorphic to \(\operatorname{Vec}_{O(2)}(V_2, V_n) \), do not vanish by the homomorphism \(i_2^* \circ d_n \) (cf. [17, VII 4], [18, III 5]), so \(i_2^* \circ d_n \) is injective. The map
\[
\theta_2 : \operatorname{Vec}_{D_n}(V_2, V_n) \to \operatorname{Vec}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})
\]
sending \([E] \) to \([E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}] \) induces a map
\[
\operatorname{VAR}_{D_n}(V_2, V_n) \to \operatorname{VAR}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})
\]
which is the product map with \(\mathbb{C}^{m_1} \times \varepsilon^{m_2} \).

Theorem 3.3. Let \(n \) be odd and let \(m_1 \) and \(m_2 \) be non-negative integers. Then the map
\[
\operatorname{VAR}_{O(2)}(V_2, V_n) \to \operatorname{VAR}_{D_n}(V_2, V_n)
\]
\[
\to \operatorname{VAR}_{D_n}(V_2, V_n \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})
\]
induced by \(\theta_2 \circ d_n \) is an injection.

Proof. Let \(E, E' \in \operatorname{Vec}_{O(2)}(V_2, V_n) \) be such that \(E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2} \cong E' \times \mathbb{C}^{m_1} \times \varepsilon^{m_2} \) as \(D_n \)-varieties. Then applying Proposition 2.3 to \(E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}} \) and \(E' \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}} \) with \(H = \mathbb{Z}/2\mathbb{Z} \) (the reflection subgroup) and \(K = D_n \), we have
\[
(E \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}})|_{X_2} \cong (c^* E' \oplus \Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}})|_{X_2}
\]
as D_n-vector bundles, where c is a scalar multiplication of V_2. Since $i^*_n \circ d_n$ is injective, $E \oplus \Theta_{C^{m_1} \oplus \varepsilon^{m_2}} \cong c^*E' \oplus \Theta_{C^{m_1} \oplus \varepsilon^{m_2}}$ as $O(2)$-vector bundles. Since the Whitney sum with $\Theta_{C^{m_1} \oplus \varepsilon^{m_2}}$ induces an isomorphism

$$\text{Vec}_{O(2)}(V_2, V_n) \cong \text{Vec}_{O(2)}(V_2, V_n \oplus C^{m_1} \oplus \varepsilon^{m_2}),$$

it follows that $E \cong c^*E'$ as $O(2)$-vector bundles, and the assertion follows. \hfill \Box

Remark. One of the first examples of non-linearizable actions by Schwarz is the $O(2)$-action on the total space of the non-trivial $E \in \text{Vec}_{O(2)}(V_2, V_3)$. By Theorem 3.2 (3), the action of D_3 on E is non-linearizable. Furthermore, by Theorem 3.3, the D_3-action on $E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2}$ remains non-linearizable (cf. [3]). Since the map $\text{Vec}_{O(2)}(V_2, V_n) \to \text{Vec}_{O(2)}(V_2, V_n \oplus V_1)$ sending $[E]$ to $[E \oplus \Theta_{V_1}]$ is trivial [20], the D_3-action on $E \times V_1$ is linearizable.

By a method similar to the proof of Theorem 3.2, we can show the following.

Theorem 3.4 (cf. [16]). Let m and n be even and $m \leq n/4$.

1. The composite map $i^*_n \circ d_n : \text{Vec}_{O(2)}(V_1, V_m) \to \text{Vec}_{D_n}(X_1, V_m)$ is an isomorphism. Hence, $d_n : \text{Vec}_{O(2)}(V_1, V_m) \to \text{Vec}_{D_n}(V_1, V_m)$ is injective and $i^*_n : \text{Vec}_{D_n}(V_1, V_m) \to \text{Vec}_{D_n}(X_1, V_m)$ is surjective.

2. The map

$$\Phi_{1,m} : \text{VAR}_{D_n}(V_1, V_m) \to \mathbb{P}_* (2i; 1 \leq i \leq m - 1)$$

is surjective.

3. The map $\text{VAR}_{O(2)}(V_1, V_m) \to \text{VAR}_{D_n}(V_1, V_m)$ is injective. Hence, if $E \in \text{Vec}_{O(2)}(V_1, V_m)$ is a non-trivial $O(2)$-vector bundle, then the D_n-action on E is non-linearizable.

Proof. (1) By [20], $\text{Vec}_{O(2)}(V_1, V_m) \cong C^{m-1}$ and by [8], $\text{Vec}_{D_n}(X_1, V_m) \cong C^{m-1}$.

We can show that $i^*_n \circ d_n$ is an isomorphism directly as in the proof of Theorem 3.2 (1).

(2) By [8], $\text{Vec}_{D_n}(X_1, V_m) \cong \bigoplus_{i=1}^{m-1} W(2i)$. From this together with (1), the assertion follows.

(3) follows from (1) and Proposition 3.1. \hfill \Box

Remarks. (1) When m and n are even and $n/4 < m < n/2$, one can show that $\text{Vec}_{D_n}(X_1, V_m) \cong \bigoplus_{i=1}^{n/2-m-1} W(2i)$ ([8]), and $i^*_n \circ d_n$ is a surjection. Hence $\Phi_{1,m}$ is a surjection from $\text{VAR}_{D_n}(V_1, V_m)$ onto $\mathbb{P}_*(2i; 1 \leq i \leq n/2 - m - 1)$.

(2) When n is even, the Whitney sum maps

$$\text{Vec}_{O(2)}(V_1, V_m) \to \text{Vec}_{O(2)}(V_1, V_m \oplus C^{m_1} \oplus \varepsilon^{m_2})$$

and

$$\text{Vec}_{D_n}(X_1, V_m) \to \text{Vec}_{D_n}(X_1, V_m \oplus C^{m_1} \oplus \varepsilon^{m_2})$$

are trivial (cf. [20], [8]).

(3) Suppose n is odd. Then the map

$$i^*_n \circ d_n : \text{Vec}_{O(2)}(V_1, V_m) \to \text{Vec}_{D_n}(X_1, V_m)$$

is injective and

$$\text{Im}(i^*_n \circ d_n) \cong \bigoplus_{i=1}^{m-1} W(2i)$$
(cf. [18]). Hence, when $(m, n) > 1$, $\text{VAR}_{O(2)}(V_1, V_m) \rightarrow \text{VAR}_{D_n}(V_1, V_m)$ is injective.

Consider the commutative diagram for n odd:

$$
\begin{array}{ccc}
\text{Vec}_{D_n}(V_1, V_m) & \xrightarrow{i^*_1} & \text{Vec}_{D_n}(X_1, V_m) \\
\theta_1 \downarrow & & \downarrow \\
\text{Vec}_{D_n}(V_1, V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2}) & \xrightarrow{i^*_1} & \text{Vec}_{D_n}(X_1, V_m \oplus \mathbb{C}^{m_1} \oplus \varepsilon^{m_2})
\end{array}
$$

where the vertical maps are the Whitney sum maps with $\Theta_{\mathbb{C}^{m_1} \oplus \varepsilon^{m_2}}$. By [18],

$$
\text{Im} i^*_1 \cong (\bigoplus_{i=1}^{2m-1} W(i)) \oplus (\bigoplus_{i=1}^{(n-1)/2-2m} W(2m - 1 + 2i))
$$

for $m < n/4$,

$$
\text{Im} i^*_1 \cong (\bigoplus_{i=1}^{n-2m-1} W(i)) \oplus (\bigoplus_{i=1}^{2m-(n+1)/2} W(n - 2m - 1 + 2i))
$$

for $n/4 < m < n/2$, and

$$
\text{Im}(\tilde{i}^*_1 \circ \theta_1) \cong (\bigoplus_{i=1}^{n-2m-1/2} W(2i - 1)).
$$

Hence we obtain the following by applying Proposition 2.3.

Theorem 3.5. Suppose that n is odd and $(m, n) > 1$. Then the image of $\Phi_{1,m}$ is isomorphic to the weighted projective space $\mathbb{P}_s((n - 5)/2)$ with a vertex. The space $\mathbb{P}_s((n - 5)/2)$ is of dimension $(n - 5)/2$ and contains the weighted projective space $\mathbb{P}(2i - 1; 1 \leq i \leq (n - 2m - 1)/2)$ whose inverse image under $\Phi_{1,m}$ consists of elements E such that the D_n-action on $E \times \mathbb{C}^{m_1} \times \varepsilon^{m_2}$ is non-linearizable.

Remark. Mederer [18] showed that $\text{Vec}_{D_k}(V_1, V_1) \cong \Omega_\mathbb{C}$, the module of Kähler differentials of \mathbb{C} over \mathbb{Q}, and furthermore, there is a surjection from $\text{Ker} i^*_1$ in the above diagram for $n \geq 5$ to $\text{Vec}_{D_n}(V_1, V_1)$. Hence $\text{Vec}_{D_n}(V_1, V_m)$ (n odd; $n \geq 5$) contains a space of uncountably-infinite dimension. Proposition 2.3 is, to our regret, not useful for classifying the D_n-actions derived from $\text{Ker} i^*_k$ or $\text{Vec}_{D_n}(V_1, V_1)$.

Suppose n is odd, and classify the D_n-actions derived from $\text{Vec}_{D_n}(V_2 \oplus \varepsilon^m, V_n)$. By applying Proposition 2.3 for $H = \mathbb{Z}/2\mathbb{Z}$ and $K = D_n$, we obtain a surjection from $\text{VAR}_{D_n}(V_2 \oplus \varepsilon^m, V_n)$ to the orbit space of $\text{Im} i^*_{2,m}$ under the action of \mathbb{C}^*, where $i^*_{2,m} : \text{Vec}_{D_n}(V_2 \oplus \varepsilon^m, V_n) \rightarrow \text{Vec}_{D_n}(X_2, V_n)$ is the restriction induced by $i^*_{2,m} : X_2 \rightarrow V_2 \oplus \varepsilon^m$. Let $i_m : V_2 \rightarrow V_2 \oplus \varepsilon^m$ be the inclusion. Then $i^*_{2,m} = i^*_m \circ i^*_{2,m}$. Since i^*_m is a surjection, $\text{Im} i^*_{2,m} = \text{Im} i^*_m$. Since $\text{Im} i^*_m \cong \bigoplus_{i=1}^{(n-1)/2} W(2i - 1)$ (cf. the proof of Theorem 3.2 (2)), we have a surjection

$$
\text{VAR}_{D_n}(V_2 \oplus \varepsilon^m, V_n) \rightarrow \mathbb{P}_s(2i - 1; 1 \leq i \leq (n - 1)/2).
$$

Theorem 3.6. Let m be a non-negative integer and let n be odd. Then there is a surjection from $\text{VAR}_{D_n}(V_2 \oplus \varepsilon^m, V_n)$ onto $\mathbb{P}_s(2i - 1; 1 \leq i \leq (n - 1)/2)$.

Remark. Let l be a non-negative integer and let $(m, n) > 1$. Then one obtains a similar result for $\text{VAR}_{D_n}(V_1 \oplus \varepsilon^l, V_m)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
REFERENCES

MATHEMATICAL SCIENCE II, HIMEJI INSTITUTE OF TECHNOLOGY, 2167 SHOSHA, HIMEJI 671-2201, JAPAN

E-mail address: kayo@sci.himeji-tech.ac.jp