Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Parabolic evolution equations with asymptotically autonomous delay

Author: Roland Schnaubelt
Journal: Trans. Amer. Math. Soc. 356 (2004), 3517-3543
MSC (2000): Primary 35R10; Secondary 34K30, 47D06
Published electronically: November 25, 2003
MathSciNet review: 2055745
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study retarded parabolic non-autonomous evolution equations whose coefficients converge as $t\to\infty$, such that the autonomous problem in the limit has an exponential dichotomy. Then the non-autonomous problem inherits the exponential dichotomy, and the solution of the inhomogeneous equation tends to the stationary solution at infinity. We use a generalized characteristic equation to deduce the exponential dichotomy and new representation formulas for the solution of the inhomogeneous equation.

References [Enhancements On Off] (What's this?)

  • 1. Paolo Acquistapace, Evolution operators and strong solutions of abstract linear parabolic equations, Differential Integral Equations 1 (1988), no. 4, 433–457. MR 945820
  • 2. Paolo Acquistapace and Brunello Terreni, A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova 78 (1987), 47–107. MR 934508
  • 3. Herbert Amann, Linear and quasilinear parabolic problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser Boston, Inc., Boston, MA, 1995. Abstract linear theory. MR 1345385
  • 4. András Bátkai, Hyperbolicity of linear partial differential equations with delay, Integral Equations Operator Theory 44 (2002), no. 4, 383–396. MR 1942031, 10.1007/BF01193667
  • 5. A. Batkái, R. Schnaubelt, Asymptotic behaviour of parabolic problems with delays in the highest order derivatives, submitted.
  • 6. Charles J. K. Batty and Ralph Chill, Approximation and asymptotic behaviour of evolution families, Differential Integral Equations 15 (2002), no. 4, 477–512. MR 1870422
  • 7. Carmen Chicone and Yuri Latushkin, Evolution semigroups in dynamical systems and differential equations, Mathematical Surveys and Monographs, vol. 70, American Mathematical Society, Providence, RI, 1999. MR 1707332
  • 8. Kenneth L. Cooke, Linear functional differential equations of asymptotically autonomous type, J. Differential Equations 7 (1970), 154–174. MR 0255944
  • 9. Richard Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim. 26 (1988), no. 3, 697–713. MR 937679, 10.1137/0326040
  • 10. W. Desch, I. Gyori, G. Gühring, Stability of nonautonomous delay equations with a positive fundamental solution, as a preprint in: Tübinger Berichte zur Funktionalanalysis 9 (2000), 125-139.
  • 11. Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
  • 12. G. Gühring, Asymptotic properties of nonautonomous evolution equations and nonautonomous retarded equations, Ph.D. thesis, Tübingen, 1999.
  • 13. Gabriele Gühring and Frank Räbiger, Asymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equations, Abstr. Appl. Anal. 4 (1999), no. 3, 169–194. MR 1811234, 10.1155/S1085337599000214
  • 14. Gabriele Gühring, Frank Räbiger, and Wolfgang M. Ruess, Linearized stability for semilinear non-autonomous evolution equations with applications to retarded differential equations, Differential Integral Equations 13 (2000), no. 4-6, 503–527. MR 1750038
  • 15. Gabriele Gühring, Frank Räbiger, and Roland Schnaubelt, A characteristic equation for non-autonomous partial functional differential equations, J. Differential Equations 181 (2002), no. 2, 439–462. MR 1907149, 10.1006/jdeq.2001.4083
  • 16. Davide Guidetti, On the asymptotic behavior of solutions of linear nonautonomous parabolic equations, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 4, 1055–1076 (English, with Italian summary). MR 923439
  • 17. István Győri, Ferenc Hartung, and Janos Turi, Preservation of stability in delay equations under delay perturbations, J. Math. Anal. Appl. 220 (1998), no. 1, 290–312. MR 1613964, 10.1006/jmaa.1997.5883
  • 18. Jack Hale, Theory of functional differential equations, 2nd ed., Springer-Verlag, New York-Heidelberg, 1977. Applied Mathematical Sciences, Vol. 3. MR 0508721
  • 19. Jack K. Hale and Sjoerd M. Verduyn Lunel, Effects of small delays on stability and control, Operator theory and analysis (Amsterdam, 1997) Oper. Theory Adv. Appl., vol. 122, Birkhäuser, Basel, 2001, pp. 275–301. MR 1846061
  • 20. Tosio Kato, Perturbation theory for linear operators, 2nd ed., Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, Band 132. MR 0407617
  • 21. Xiao-Biao Lin, Exponential dichotomies and homoclinic orbits in functional-differential equations, J. Differential Equations 63 (1986), no. 2, 227–254. MR 848268, 10.1016/0022-0396(86)90048-3
  • 22. Xiao-Biao Lin, Exponential dichotomies in intermediate spaces with applications to a diffusively perturbed predator-prey model, J. Differential Equations 108 (1994), no. 1, 36–63. MR 1268350, 10.1006/jdeq.1994.1024
  • 23. Alessandra Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995. MR 1329547
  • 24. John Mallet-Paret, The Fredholm alternative for functional-differential equations of mixed type, J. Dynam. Differential Equations 11 (1999), no. 1, 1–47. MR 1680463, 10.1023/A:1021889401235
  • 25. Jan Prüss, On resolvent operators for linear integro-differential equations of Volterra type, J. Integral Equations 5 (1983), no. 3, 211–236. MR 702432
  • 26. Abdelaziz Rhandi, Extrapolation methods to solve non-autonomous retarded partial differential equations, Studia Math. 126 (1997), no. 3, 219–233. MR 1475920
  • 27. W. M. Ruess, Existence of solutions to partial functional-differential equations with delay, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., vol. 178, Dekker, New York, 1996, pp. 259–288. MR 1386683
  • 28. R. Schnaubelt, Exponential bounds and hyperbolicity of evolution equations, Ph.D. thesis, Tübingen, 1996.
  • 29. Roland Schnaubelt, Sufficient conditions for exponential stability and dichotomy of evolution equations, Forum Math. 11 (1999), no. 5, 543–566. MR 1705902, 10.1515/form.1999.013
  • 30. R. Schnaubelt, Exponential dichotomy of nonautonomous evolution equations, Habilitation thesis, Tübingen, 1999.
  • 31. Roland Schnaubelt, A sufficient condition for exponential dichotomy of parabolic evolution equations, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 149–158. MR 1816443
  • 32. Roland Schnaubelt, Asymptotically autonomous parabolic evolution equations, J. Evol. Equ. 1 (2001), no. 1, 19–37. MR 1838319, 10.1007/PL00001363
  • 33. R. Schnaubelt, Asymptotic behaviour of parabolic nonautonomous evolution equations, Report No. 12 (2002), FB Mathematik und Informatik, University of Halle (preprint).
  • 34. Konrad Schumacher, On the resolvent of linear nonautonomous partial functional-differential equations, J. Differential Equations 59 (1985), no. 3, 355–387. MR 807853, 10.1016/0022-0396(85)90146-9
  • 35. Hiroki Tanabe, Equations of evolution, Monographs and Studies in Mathematics, vol. 6, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. Translated from the Japanese by N. Mugibayashi and H. Haneda. MR 533824
  • 36. Jianhong Wu, Theory and applications of partial functional-differential equations, Applied Mathematical Sciences, vol. 119, Springer-Verlag, New York, 1996. MR 1415838
  • 37. Atsushi Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups. II, Funkcial. Ekvac. 33 (1990), no. 1, 139–150. MR 1065472
  • 38. Atsushi Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces, Boll. Un. Mat. Ital. B (7) 5 (1991), no. 2, 341–368 (English, with Italian summary). MR 1111127

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35R10, 34K30, 47D06

Retrieve articles in all journals with MSC (2000): 35R10, 34K30, 47D06

Additional Information

Roland Schnaubelt
Affiliation: FB Mathematik und Informatik, Martin-Luther-Universität, 06099 Halle, Germany

Keywords: Retarded parabolic evolution equation, asymptotically autonomous, exponential dichotomy, robustness, convergence of solutions, variation of parameters formula, characteristic equation, evolution semigroup
Received by editor(s): January 18, 2002
Received by editor(s) in revised form: March 27, 2003
Published electronically: November 25, 2003
Article copyright: © Copyright 2003 American Mathematical Society