Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete linear Weingarten surfaces of Bryant type. A Plateau problem at infinity


Authors: José Antonio Gálvez, Antonio Martínez and Francisco Milán
Journal: Trans. Amer. Math. Soc. 356 (2004), 3405-3428
MSC (2000): Primary 53C42; Secondary 53A35
DOI: https://doi.org/10.1090/S0002-9947-04-03592-5
Published electronically: April 26, 2004
MathSciNet review: 2055739
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study a large class of Weingarten surfaces which includes the constant mean curvature one surfaces and flat surfaces in the hyperbolic 3-space. We show that these surfaces can be parametrized by holomorphic data like minimal surfaces in the Euclidean 3-space and we use it to study their completeness. We also establish some existence and uniqueness theorems by studing the Plateau problem at infinity: when is a given curve on the ideal boundary the asymptotic boundary of a complete surface in our family? and, how many embedded solutions are there?


References [Enhancements On Off] (What's this?)

  • 1. J. A. Aledo and J. A. Gálvez, Complete Surfaces in the Hyperbolic Space with a Constant Principal Curvature, to appear in Math. Nachr.
  • 2. R. L. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154-155 (1987), 321-347.
  • 3. P. Collin, L. Hauswirth and H. Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math. 153 (2001), 623-659. MR 2002j:53012
  • 4. J. B. Conway, Functions of one complex variable II, Springer-Verlag, New York, 1995. MR 96i:30001
  • 5. M. P. do Carmo and H. B. Lawson, On Alexandrov-Bernstein theorems in hyperbolic space, Duke Math. J. 50 (1983), 995-1003. MR 85f:53009
  • 6. J. A. Gálvez, A. Martínez and F. Milán, Flat surfaces in the hyperbolic 3-space, Math. Ann. 316 (2000), 419-435. MR 2002b:53013
  • 7. M. Ghomi, Gauss map, topology, and convexity of hypersurfaces with nonvanishing curvature, Topology 41 (2002), 107-117. MR 2002j:53013
  • 8. G. M. Goluzin, Geometric theory of functions of a complex variable, American Mathematical Society, Providence, R.I., 1969. MR 40:308
  • 9. R. Harmelin, Locally convex functions and the Schwarzian derivative, Israel J. Math. 67 (1989), 367-379. MR 90m:30014
  • 10. M. Kokubu, M. Umehara and K. Yamada, An elementary proof of Small's formula for null curves in PSL(2,C) and an analogue for Legendrian curves in PSL(2,C), Osaka J. Math. 40 (2003), 697-715.
  • 11. N. J. Korevaar, R. Kusner, W. H. Meeks and B. Solomon, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114 (1992), 1-43. MR 92k:53116
  • 12. G. Levitt and H. Rosenberg, Symmetry of constant mean curvature hypersurfaces in hyperbolic space, Duke Math. J. 52 (1985), 53-59. MR 86h:53063
  • 13. Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Am. Math. Soc. 55 (1949), 545-551. MR 10:696e
  • 14. Z. Nehari, A property of convex conformal maps, J. Analyse Math. 30 (1976), 390-393. MR 55:12901
  • 15. F. Pacard and F. Pimentel, Attaching handles to Bryant surfaces, preprint (available at http://arXiv.org/math.DG/0112224).
  • 16. C. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Math. Ann. 155 (1964), 108-154. MR 29:6007
  • 17. H. Rosenberg and R. Sa Earp, The Geometry of Properly Embedded Special Surfaces in $\mathbf{R}^3$; e.g., Surfaces Satisfying $aH+bK=1$, where $a$ and $b$ are Positive, Duke Math. J. 73 (1994), 291-306. MR 95b:53010
  • 18. H. Rosenberg and J. Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994), 379-409. MR 95g:53007
  • 19. R. Sa Earp and E. Toubiana, Sur les surfaces de Weingarten spéciales de type minimal, Bol. Soc. Brasil. Mat. 26 (1995), 129-148. MR 96j:53006
  • 20. R. Sa Earp and E. Toubiana, Classification des surfaces de type Delaunay, Amer. J. Math. 121 (1999), 671-700. MR 2001b:53004
  • 21. R. Sa Earp and E. Toubiana, Symmetry of Properly Embedded Special Weingarten Surfaces in $\mathbb{H}^3$, Trans. Am. Math. Soc. 351 (1999), 4693-4711. MR 2000c:53007
  • 22. W. Rossman, M. Umehara and K. Yamada, Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature I, preprint (available at http://arXiv.org/math.DG/0008015).
  • 23. A. J. Small, Surfaces of constant mean curvature 1 in H$^3$and algebraic curves on a quadric, P. Am. Math. Soc. 122 (1994), 1211-1220. MR 95b:53011
  • 24. M. Spivak, A comprehensive introduction to Differential Geometry, Vol. 4, Publish or Perish, Inc., Berkeley, 1979. MR 82g:53003d
  • 25. M. Umehara and K. Yamada, Complete surfaces of constant mean curvature 1 in the hyperbolic 3-space, Ann. of Math. 137 (1993), 611-638. MR 94c:53015
  • 26. M. Umehara and K. Yamada, A parametrization of the Weierstrass formulae and perturbation of complete minimal surfaces in $\mathbf{R}^3$ into the hyperbolic $3$-space, J. Reine Angew. Math. 432 (1992), 93-116. MR 94e:54004
  • 27. J. van Heijenoort, On locally convex manifolds, Comm. Pure Appl. Math. 5 (1952), 223-242. MR 14:577b

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C42, 53A35

Retrieve articles in all journals with MSC (2000): 53C42, 53A35


Additional Information

José Antonio Gálvez
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: jagalvez@ugr.es

Antonio Martínez
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: amartine@ugr.es

Francisco Milán
Affiliation: Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Email: milan@ugr.es

DOI: https://doi.org/10.1090/S0002-9947-04-03592-5
Keywords: Hyperbolic 3-space, Weingarten surfaces, Plateau problem, Weierstrass data.
Received by editor(s): November 11, 2002
Published electronically: April 26, 2004
Additional Notes: This research was partially supported by MCYT-FEDER Grant No. BFM2001-3318 and Junta de Andalucía CEC: FQM0804
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society