Surface superconductivity in dimensions

Author:
Xing-Bin Pan

Translated by:

Journal:
Trans. Amer. Math. Soc. **356** (2004), 3899-3937

MSC (2000):
Primary 35Q55, 82D55

Published electronically:
February 4, 2004

MathSciNet review:
2058511

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Ginzburg-Landau system for a superconductor occupying a -dimensional bounded domain, and improve the estimate of the upper critical field obtained by K. Lu and X. Pan in J. Diff. Eqns., **168** (2000), 386-452. We also analyze the behavior of the order parameters. We show that, under an applied magnetic field lying below and not far from , order parameters concentrate in a vicinity of a sheath of the surface that is tangential to the applied field, and exponentially decay both in the normal and tangential directions away from the sheath in the sense. As the applied field decreases further but keeps in between and away from and , the superconducting sheath expands but does not cover the entire surface, and superconductivity at the surface portion orthogonal to the applied field is always very weak. This phenomenon is significantly different to the surface superconductivity on a cylinder of infinite height studied by X. Pan in Comm. Math. Phys., **228** (2002), 327-370, where under an axial applied field lying in-between and the entire surface is in the superconducting state.

**[A]**Shmuel Agmon,*Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of 𝑁-body Schrödinger operators*, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR**745286****[A1]**Y. Almog,*Non-linear surface superconductivity for type II superconductors in the large-domain limit*, Arch. Ration. Mech. Anal.**165**(2002), no. 4, 271–293. MR**1939213**, 10.1007/s00205-002-0224-7**[BPT]**P. Bauman, D. Phillips, and Q. Tang,*Stable nucleation for the Ginzburg-Landau system with an applied magnetic field*, Arch. Rational Mech. Anal.**142**(1998), no. 1, 1–43. MR**1629119**, 10.1007/s002050050082**[BS]**Andrew Bernoff and Peter Sternberg,*Onset of superconductivity in decreasing fields for general domains*, J. Math. Phys.**39**(1998), no. 3, 1272–1284. MR**1608449**, 10.1063/1.532379**[C]**S. J. Chapman,*Nucleation of superconductivity in decreasing fields. I, II*, European J. Appl. Math.**5**(1994), no. 4, 449–468, 469–494. MR**1309734****[CHO]**S. J. Chapman, S. D. Howison, and J. R. Ockendon,*Macroscopic models for superconductivity*, SIAM Rev.**34**(1992), no. 4, 529–560. MR**1193011**, 10.1137/1034114**[DFS]**Manuel del Pino, Patricio L. Felmer, and Peter Sternberg,*Boundary concentration for eigenvalue problems related to the onset of superconductivity*, Comm. Math. Phys.**210**(2000), no. 2, 413–446. MR**1776839**, 10.1007/s002200050786**[dG]**P. G. De Gennes,*Superconductivity of Metals and Alloys,*W. A. Benjamin, New York, 1966.**[DGP]**Qiang Du, Max D. Gunzburger, and Janet S. Peterson,*Analysis and approximation of the Ginzburg-Landau model of superconductivity*, SIAM Rev.**34**(1992), no. 1, 54–81. MR**1156289**, 10.1137/1034003**[DH]**Monique Dauge and Bernard Helffer,*Eigenvalues variation. I. Neumann problem for Sturm-Liouville operators*, J. Differential Equations**104**(1993), no. 2, 243–262. MR**1231468**, 10.1006/jdeq.1993.1071**[G]**Giovanni P. Galdi,*An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I*, Springer Tracts in Natural Philosophy, vol. 38, Springer-Verlag, New York, 1994. Linearized steady problems. MR**1284205****[GL]**L. D. Landau,*Collected papers of L. D. Landau*, Edited and with an introduction by D. ter Haar. Second printing, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR**0237287****[GP]**T. Giorgi and D. Phillips,*The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model*, SIAM J. Math. Anal.**30**(1999), no. 2, 341–359 (electronic). MR**1664763**, 10.1137/S0036141097323163**[H]**Bernard Helffer,*Semi-classical analysis for the Schrödinger operator and applications*, Lecture Notes in Mathematics, vol. 1336, Springer-Verlag, Berlin, 1988. MR**960278****[HM1]**Bernard Helffer and Abderemane Morame,*Magnetic bottles in connection with superconductivity*, J. Funct. Anal.**185**(2001), no. 2, 604–680. MR**1856278**, 10.1006/jfan.2001.3773**[HM2]**Bernard Helffer and Abderemane Morame,*Magnetic bottles for the Neumann problem: the case of dimension 3*, Proc. Indian Acad. Sci. Math. Sci.**112**(2002), no. 1, 71–84. Spectral and inverse spectral theory (Goa, 2000). MR**1894543**, 10.1007/BF02829641**[HP]**B. Helffer and X. B. Pan,*Upper critical field and location of surface nucleation of superconductivity*, Ann. L'I.H.P. Analyse non Linéaire,**20**(2003), 145-181.**[J]**Hala T. Jadallah,*The onset of superconductivity in a domain with a corner*, J. Math. Phys.**42**(2001), no. 9, 4101–4121. MR**1852538**, 10.1063/1.1387466**[JRS]**H. T. Jadallah, J. Rubinstein and P. Sternberg,*Phase transition curves for mesoscopic superconducting samples*, Phys. Rev. Lett.,**82**(1999), 2935-2938.**[L]**O. A. Ladyzhenskaya,*The boundary value problems of mathematical physics*, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR**793735****[LP1]**Kening Lu and Xing-Bin Pan,*Gauge invariant eigenvalue problems in 𝑅² and in 𝑅²₊*, Trans. Amer. Math. Soc.**352**(2000), no. 3, 1247–1276. MR**1675206**, 10.1090/S0002-9947-99-02516-7**[LP2]**Kening Lu and Xing-Bin Pan,*Eigenvalue problems of Ginzburg-Landau operator in bounded domains*, J. Math. Phys.**40**(1999), no. 6, 2647–2670. MR**1694223**, 10.1063/1.532721**[LP3]**Kening Lu and Xing-Bin Pan,*Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity*, Phys. D**127**(1999), no. 1-2, 73–104. MR**1678383**, 10.1016/S0167-2789(98)00246-2**[LP4]**Kening Lu and Xing-Bin Pan,*Surface nucleation of superconductivity in 3-dimensions*, J. Differential Equations**168**(2000), no. 2, 386–452. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998). MR**1808455**, 10.1006/jdeq.2000.3892**[M]**Richard Montgomery,*Hearing the zero locus of a magnetic field*, Comm. Math. Phys.**168**(1995), no. 3, 651–675. MR**1328258****[P1]**Xing-Bin Pan,*Surface superconductivity in applied magnetic fields above 𝐻_{𝐶₂}*, Comm. Math. Phys.**228**(2002), no. 2, 327–370. MR**1911738**, 10.1007/s002200200641**[P2]**Xing-Bin Pan,*Upper critical field for superconductors with edges and corners*, Calc. Var. Partial Differential Equations**14**(2002), no. 4, 447–482. MR**1911825**, 10.1007/s005260100111**[P3]**X. B. Pan,*Superconducting thin films and the effect of de Gennes parameter*, SIAM J. Math. Anal.,**34**(2003), 957-991.**[P4]**X. B. Pan,*Superconductivity near critical temperature*, J. Math. Phys.,**44**(2003), 2639-2678.**[PK]**Xing-Bin Pan and Keng-Huat Kwek,*Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains*, Trans. Amer. Math. Soc.**354**(2002), no. 10, 4201–4227. MR**1926871**, 10.1090/S0002-9947-02-03033-7**[R]**Jacob Rubinstein,*Six lectures on superconductivity*, Boundaries, interfaces, and transitions (Banff, AB, 1995) CRM Proc. Lecture Notes, vol. 13, Amer. Math. Soc., Providence, RI, 1998, pp. 163–184. MR**1619115****[SdG]**D. Saint-James and P. G. De Gennes,*Onset of superconductivity in decreasing fields*, Physics Letters,**6**: (5) (1963), 306-308.**[SS]**E. Sandier and S. Serfaty,*The decrease of bulk-superconductivity close to the second critical field in the Ginzburg-Landau model*, SIAM J. Math. Anal.,**34**(2003), 939-956.**[SST]**D. Saint-James and G. Sarma and E. J. Thomas,*Type II Superconductivity*, Pergamon Press, Oxford, 1969.**[T]**M. Tinkham,*Introduction to Superconductivity*, McGraw-Hill, New York, 1975.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
35Q55,
82D55

Retrieve articles in all journals with MSC (2000): 35Q55, 82D55

Additional Information

**Xing-Bin Pan**

Affiliation:
Department of Mathematics, Zhejiang University, Hangzhou 310027, China – and – Department of Mathematics, National University of Singapore, Singapore 119260

Email:
amaxbpan@dial.zju.edu.cn, matpanxb@nus.edu.sg

DOI:
https://doi.org/10.1090/S0002-9947-04-03530-5

Keywords:
Ginzburg-Landau system,
superconductivity,
nucleation,
upper critical field,
Schr\"{o}dinger operator with a magnetic field

Received by editor(s):
October 12, 2001

Received by editor(s) in revised form:
May 19, 2003

Published electronically:
February 4, 2004

Article copyright:
© Copyright 2004
American Mathematical Society