Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Higher homotopy commutativity of $H$-spaces and the permuto-associahedra


Authors: Yutaka Hemmi and Yusuke Kawamoto
Journal: Trans. Amer. Math. Soc. 356 (2004), 3823-3839
MSC (2000): Primary 55P45, 55P48; Secondary 55P15, 52B11
DOI: https://doi.org/10.1090/S0002-9947-04-03647-5
Published electronically: May 11, 2004
MathSciNet review: 2058507
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a combinatorial definition of a higher homotopy commutativity of the multiplication for an $A_n$-space. To give the definition, we use polyhedra called the permuto-associahedra which are constructed by Kapranov. We also show that if a connected $A_p$-space has the finitely generated mod $p$ cohomology for a prime $p$ and the multiplication of it is homotopy commutative of the $p$-th order, then it has the mod $p$ homotopy type of a finite product of Eilenberg-Mac Lane spaces $K(\mathbb{Z},1)$s, $K(\mathbb{Z},2)$s and $K(\mathbb{Z}/p^i,1)$s for $i\ge 1$.


References [Enhancements On Off] (What's this?)

  • 1. J. Aguadé and L. Smith, On the mod $p$ torus theorem of John Hubbuck, Math. Z. 191 (1986), 325-326. MR 87e:57044
  • 2. A. Bousfield and D. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer-Verlag, 1972. MR 51:1825
  • 3. C. Broto and J. A. Crespo, $H$-spaces with noetherian mod two cohomology algebra, Topology 38 (1999), 353-386. MR 99i:55013
  • 4. W. Browder, The cohomology of covering spaces of $H$-spaces, Bull. Amer. Math. Soc. 65 (1959), 140-141. MR 22:1891
  • 5. Y. Hemmi, Higher homotopy commutativity of $H$-spaces and the mod $p$ torus theorem, Pacific J. Math. 149 (1991), 95-111. MR 92a:55010
  • 6. J. R. Hubbuck, On homotopy commutative $H$-spaces, Topology 8 (1969), 119-126. MR 38:6592
  • 7. R. M. Kane, The homology of Hopf spaces, North-Holland Math. Library 40, North-Holland, 1988. MR 90f:55018
  • 8. M. M. Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993), 119-142. MR 94b:52017
  • 9. Y. Kawamoto, Loop spaces of $H$-spaces with finitely generated cohomology, Pacific J. Math. 190 (1999), 311-328. MR 2000i:55027
  • 10. -, Homotopy classification of higher homotopy commutative loop spaces with finitely generated cohomology, Hiroshima Math. J. 30 (2000), 317-344. MR 2001e:55011
  • 11. -, Higher homotopy commutativity of $H$-spaces with finitely generated cohomology, Pacific J. Math. 204 (2002), 145-161. MR 2003d:55010
  • 12. Y. Kawamoto and J. P. Lin, Homotopy commutativity of $H$-spaces with finitely generated cohomology, Trans. Amer. Math. Soc. 353 (2001), 4481-4496. MR 2002g:55017
  • 13. J. P. Lin, A cohomological proof of the torus theorem, Math. Z. 190 (1985), 469-476. MR 87c:55009
  • 14. -, Loops of $H$-spaces with finitely generated cohomology rings, Topology Appl. 60 (1994), 131-152. MR 95m:55022
  • 15. -, $H$-spaces with finiteness conditions, Handbook of Algebraic Topology, edited by I.M. James, North-Holland, 1995, 1095-1141. MR 97c:55017
  • 16. J. P. Lin and F. D. Williams, Homotopy-commutative $H$-spaces, Proc. Amer. Math. Soc. 113 (1991), 857-865. MR 92b:55011
  • 17. C. A. McGibbon, Higher forms of homotopy commutativity and finite loop spaces, Math. Z. 201 (1989), 363-374. MR 90f:55019
  • 18. R. J. Milgram, Iterated loop spaces, Ann. of Math. 84 (1966), 386-403. MR 34:6767
  • 19. M. Mimura and H. Toda, Topology of Lie groups, I and II, Trans. Math. Monographs 91, Amer. Math. Soc., 1991. MR 92h:55001
  • 20. V. Reiner and G. M. Ziegler, Coxeter-associahedra, Mathematika 41 (1994), 364-393. MR 95m:52023
  • 21. M. Slack, A classification theorem for homotopy commutative mod $2$ $H$-spaces with finitely generated cohomology rings, Mem. Amer. Math. Soc. 92 (1991). MR 92k:55015
  • 22. J. D. Stasheff, Homotopy associativity of $H$-spaces, I and II, Trans. Amer. Math. Soc. 108 (1963), 275-292, 293-312. MR 28:1623
  • 23. -, $H$-spaces from a homotopy point of view, Lecture Notes in Math. 161, Springer-Verlag, 1970. MR 42:5261
  • 24. M. Sugawara, A condition that a space is group-like, Math. J. Okayama Univ. 7 (1957), 123-149. MR 20:3546
  • 25. -, On the homotopy commutativity of groups and loop spaces, Mem. College Sci. Univ. Kyoto Ser. A 33 (1960), 257-269. MR 22:11394
  • 26. F. D. Williams, Higher homotopy-commutativity, Trans. Amer. Math. Soc. 139 (1969), 191-206. MR 39:2163
  • 27. -, Higher homotopy commutativity and extension of maps, Proc. Amer. Math. Soc. 26 (1970), 664-670. MR 42:8491
  • 28. -, Higher Samelson products, J. Pure Appl. Algebra 2 (1972), 249-260. MR 46:2670
  • 29. G. M. Ziegler, Lectures on Polytopes, Graduate Texts in Math. 152, Springer-Verlag, 1994. MR 96a:52011

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55P45, 55P48, 55P15, 52B11

Retrieve articles in all journals with MSC (2000): 55P45, 55P48, 55P15, 52B11


Additional Information

Yutaka Hemmi
Affiliation: Department of Mathematics, Faculty of Science, Kochi University, Kochi 780-8520, Japan
Email: hemmi@math.kochi-u.ac.jp

Yusuke Kawamoto
Affiliation: Department of Mathematics, National Defense Academy, Yokosuka 239-8686, Japan
Email: yusuke@nda.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-04-03647-5
Keywords: Higher homotopy commutativity, $H$-spaces, $A_n$-spaces, $AC_n$-spaces, permuto-associahedra
Received by editor(s): November 27, 2001
Published electronically: May 11, 2004
Dedicated: Dedicated to the memory of Professor Masahiro Sugawara
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society