Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the $L_{p}$-Minkowski problem


Authors: Erwin Lutwak, Deane Yang and Gaoyong Zhang
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 4359-4370
MSC (2000): Primary 52A40
Published electronically: December 15, 2003
MathSciNet review: 2067123
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A volume-normalized formulation of the $L_{p}$-Minkowski problem is presented. This formulation has the advantage that a solution is possible for all $p\ge 1$, including the degenerate case where the index $p$ is equal to the dimension of the ambient space. A new approach to the $L_{p}$-Minkowski problem is presented, which solves the volume-normalized formulation for even data and all $p\ge 1$.


References [Enhancements On Off] (What's this?)

  • [A$_{1}$] A. D. Aleksandrov, On the theory of mixed volumes. I. Extension of certain concepts in the theory of convex bodies, Mat. Sbornik N.S. 2 (1937), 947-972 (Russian; German summary).
  • [A$_{2}$] A. D. Aleksandrov, On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sbornik N.S. 3 (1938), 27-46 (Russian; German summary).
  • [A$_{3}$] A. Alexandroff, Über die Oberflächenfunktion eines konvexen Körpers. (Bemerkung zur Arbeit “Zur Theorie der gemischten Volumina von konvexen Körpern”), Rec. Math. N.S. [Mat. Sbornik] 6(48) (1939), 167–174 (Russian, with German summary). MR 0001597
  • [A$_{4}$] A. Alexandroff, Smoothness of the convex surface of bounded Gaussian curvature, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36 (1942), 195–199. MR 0007626
  • [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419
  • [Cal] Eugenio Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958), 105–126. MR 0106487
  • [CNS] L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), no. 3, 369–402. MR 739925, 10.1002/cpa.3160370306
  • [ChY] Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the 𝑛-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 0423267
  • [FJ] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938), 1-31.
  • [Fi] William J. Firey, Shapes of worn stones, Mathematika 21 (1974), 1–11. MR 0362045
  • [G] Richard J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 1356221
  • [Gl$_{1}$] Herman Gluck, The generalized Minkowski problem in differential geometry in the large, Ann. of Math. (2) 96 (1972), 245–276. MR 0309021
  • [Gl$_{2}$] Herman Gluck, Manifolds with preassigned curvature—a survey, Bull. Amer. Math. Soc. 81 (1975), 313–329. MR 0367861, 10.1090/S0002-9904-1975-13740-2
  • [Le$_{1}$] H. Lewy, On the existence of a closed convex surface realizing a given Riemannian metric, Proc. Nat. Acad. Sci. USA 24 (1938), 104-106.
  • [Le$_{2}$] H. Lewy, On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc. 43 (1938), 258-270.
  • [Lu$_{1}$] Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
  • [Lu$_{2}$] Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, 10.1006/aima.1996.0022
  • [LuO] Erwin Lutwak and Vladimir Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), no. 1, 227–246. MR 1316557
  • [LuYZ$_{1}$] E. Lutwak, D. Yang, and G. Zhang, Sharp affine $L_{p}$ Sobolev inequalities, J. Differential Geom. 62 (2002), 17-38.
  • [LuYZ$_{2}$] E. Lutwak, D. Yang, and G. Zhang, $L_{p}$ John ellipsoids, (manuscript).
  • [M$_{1}$] H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198-219.
  • [M$_{2}$] H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447-495.
  • [N] Louis Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953), 337–394. MR 0058265
  • [P$_{1}$] A. V. Pogorelov, Regularity of a convex surface with given Gaussian curvature, Mat. Sbornik N.S. 31(73) (1952), 88–103 (Russian). MR 0052807
  • [P$_{2}$] A. V. Pogorelov, A regular solution of the 𝑛-dimensional Minkowski problem, Soviet Math. Dokl. 12 (1971), 1192–1196. MR 0284956
  • [P$_{3}$] Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg; Scripta Series in Mathematics. MR 0478079
  • [S] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521
  • [Si] David Singer, Preassigning curvature of polyhedra homeomorphic to the two-sphere, J. Differential Geometry 9 (1974), 633–638. MR 0394697
  • [St$_{1}$] Alina Stancu, The discrete planar 𝐿₀-Minkowski problem, Adv. Math. 167 (2002), no. 1, 160–174. MR 1901250, 10.1006/aima.2001.2040
  • [St$_{2}$] A. Stancu, On the number of solutions to the discrete two-dimensional $L\sb 0$-Minkowski problem., Adv. Math. (to appear).
  • [T] A. C. Thompson, Minkowski geometry, Encyclopedia of Mathematics and its Applications, vol. 63, Cambridge University Press, Cambridge, 1996. MR 1406315
  • [U] V. Umanskiy, On solvability of the two dimensional $L_{p}$-Minkowski problem, Adv. Math. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 52A40

Retrieve articles in all journals with MSC (2000): 52A40


Additional Information

Erwin Lutwak
Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
Email: elutwak@poly.edu

Deane Yang
Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
Email: dyang@poly.edu

Gaoyong Zhang
Affiliation: Department of Mathematics, Polytechnic University, Brooklyn, New York 11201
Email: gzhang@poly.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-03-03403-2
Received by editor(s): May 16, 2001
Received by editor(s) in revised form: April 16, 2003
Published electronically: December 15, 2003
Additional Notes: This research was supported, in part, by NSF Grants DMS–9803261 and DMS–0104363
Article copyright: © Copyright 2003 American Mathematical Society