Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Radon's inversion formulas


Author: W. R. Madych
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 4475-4491
MSC (2000): Primary 44A12, 42B25
DOI: https://doi.org/10.1090/S0002-9947-04-03404-X
Published electronically: January 16, 2004
MathSciNet review: 2067130
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Radon showed the pointwise validity of his celebrated inversion formulas for the Radon transform of a function $f$ of two real variables (formulas (III) and (III$'$) in J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. kl. 69 (1917), 262-277) under the assumption that $f$ is continuous and satisfies two other technical conditions. In this work, using the methods of modern analysis, we show that these technical conditions can be relaxed. For example, the assumption that $f$ be in $L^p(\mathbb{R} ^2)$for some $p$ satisfying $4/3<p<2$ suffices to guarantee the almost everywhere existence of its Radon transform and the almost everywhere validity of Radon's inversion formulas.


References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Analyse Math. 47 (1986), 69-85. MR 88f:42036
  • 2. S. R. Deans, The Radon Transform and some of its Applications, Wiley, New York, 1983. MR 86a:44003
  • 3. S. Helgason, The Radon Transform, Birkhauser, Boston, 1980.
  • 4. W. R. Madych, Summability and approximate reconstruction from Radon transform data, Contemporary Mathematics, Vol. 113 (1990), 189-219. MR 92i:44001
  • 5. W. R. Madych, Tomography, approximate reconstruction, and continuous wavelet transforms, Applied and Comp. Harm. Anal. 7, (1999), 54-100. MR 2000g:44003
  • 6. F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Stuttgart, 1986. MR 88m:44008
  • 7. J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl. 69 (1917), 262-277.
  • 8. L. A. Shepp and J. B. Kruskal, Computerized tomography, the new medical X-ray technology, Amer. Math. Monthly 85, (1978), 420-439.
  • 9. K. T. Smith, D. C. Solmon, and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing a function from radiographs, Bull. AMS 83, (1977), 1227-1270. MR 58:9394a
  • 10. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. MR 44:7280
  • 11. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, N.J., 1993. MR 95c:42002
  • 12. A. Zygmund, Trigonometric Series, Second edition, Volumes I and II combined, Cambridge Univ. Press, Cambridge, 1968. MR 38:4882

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 44A12, 42B25

Retrieve articles in all journals with MSC (2000): 44A12, 42B25


Additional Information

W. R. Madych
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email: madych@uconn.edu

DOI: https://doi.org/10.1090/S0002-9947-04-03404-X
Received by editor(s): May 12, 2003
Published electronically: January 16, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society