Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Spécialisation de la $R$-équivalence pour les groupes réductifs


Author: Philippe Gille
Translated by:
Journal: Trans. Amer. Math. Soc. 356 (2004), 4465-4474
MSC (2000): Primary 20G15, 14L40
DOI: https://doi.org/10.1090/S0002-9947-04-03443-9
Published electronically: January 13, 2004
MathSciNet review: 2067129
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Soit $G/k$ un groupe réductif défini sur un corps $k$ de caractéristique distincte de $2$. On montre que le groupes des classes de $R$-équivalence de $G(k)$ne change pas lorsque l'on passe de $k$ au corps des séries de Laurent $k((t))$, c'est-à-dire que l'on a un isomorphisme naturel $G(k)/R \buildrel\sim\over\longrightarrow G\bigl( k((t)) \bigr)/R$.


ABSTRACT. Let $G/k$ be a reductive group defined over a field of characteristic $\not =2$. We show that the group of $R$-equivalence for $G(k)$ is invariant by the change of fields $k((t))/k$ given by the Laurent series. In other words, there is a natural isomorphism $G(k)/R \buildrel\sim\over\longrightarrow G\bigl( k((t)) \bigr)/R$.


References [Enhancements On Off] (What's this?)

  • [BM] E. Bierstone et P.D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), 207-302. MR 98e:14010
  • [Bo] A. Borel, Linear algebraic groups, seconde édition, Graduate Texts in Mathematics 126, Springer-Verlag. MR 92d:20001
  • [BLR] S. Bosch, W. Lütkebohmert et M. Raynaud, Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete 21 (1990) Springer-Verlag. MR 91i:14034
  • [BrT] F. Bruhat et J. Tits, Groupes réductifs sur un corps local 2, Publ. Math. IHES 60 (1984). MR 86c:20042
  • [CM] V. Chernousov et A.S. Merkurjev, $R$-equivalence in spinor groups, J. Amer. Math. Soc. 14 (2001), 509-534. MR 2002d:14074
  • [CTS1] J-L. Colliot-Thélène et J.-J. Sansuc, La $R$-équivalence sur les tores, Ann. Scient. ENS, vol. 10 (1977), 175-230. MR 56:8576
  • [CTS2] J-L. Colliot-Thélène et J.-J. Sansuc, Principal homogeneous spaces under flasque tori : applications, J. of Alg. 106 (1987), 148-205. MR 88j:14059
  • [CS] C. De Concini et T.A. Springer, Compactification of symmetric varieties, Transform. Groups 4 (1999), 273-300. MR 2000f:14079
  • [EH] S. Encinas et H. Hauser, Strong resolution of singularities in characteristic zero, preprint (2002), ArXiv: math.AG/0211423.
  • [G] P. Gille, La ${\rm R}$-équivalence sur les groupes algébriques réductifs définis sur un corps global, Publ. Math. I.H.E.S. 86 (1997), 199-235. MR 99c:20066
  • [GD] A. Grothendieck et J. Dieudonné, Éléments de Géométrie Algébrique 4, Pub. Math. IHES. 20 (1964), 24 (1965), 28 (1966), 32 (1967). MR 30:3885, MR 33:7330, MR 36:178
  • [H] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II., Ann. of Math. 79 (1964), 109-203 et 205-326. MR 33:7333
  • [K1] J. Kollár, Rationally connected varieties over local fields, Ann. of Math. 150 (1999), 357-367. MR 2000h:14019
  • [K2] J. Kollár, Specialization of zero-cycles, prépublication (2002), math.AG/0205148.
  • [M] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, seconde édition, North-Holland (1986). MR 87d:11037
  • [P] G. Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), 197-202. MR 83m:20064
  • [R] M. S. Raghunathan, Principal bundles admitting a rational section, Invent. Math. 116 (1994), 409-423. MR 95f:14093
  • [S] E. Strickland, A vanishing theorem for group compactifications, Math. Ann. 277 (1987), 165-171. MR 88b:14035
  • [SGA3] Séminaire de Géométrie algébrique de l'I.H.E.S., 1963-1964, schémas en groupes, dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Math. 151-153, Springer (1970). MR 43:223a
  • [T] J. Tits, Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), 648-677. MR 91g:20069
  • [V] V. E. Voskresenskii, O privedennoi gruppe Uaitheda prostoi algebry (Sur le groupe de Whitehead d'une algèbre simple), Uspekhi Mat. Nauk 32 (1977), 247-248. MR 58:16677

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G15, 14L40

Retrieve articles in all journals with MSC (2000): 20G15, 14L40


Additional Information

Philippe Gille
Affiliation: UMR 8628 du C.N.R.S., Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay, France
Email: gille@math.u-psud.fr

DOI: https://doi.org/10.1090/S0002-9947-04-03443-9
Received by editor(s): April 9, 2003
Received by editor(s) in revised form: May 9, 2003
Published electronically: January 13, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society