Radon transforms on affine Grassmannians

Author:
Boris Rubin

Journal:
Trans. Amer. Math. Soc. **356** (2004), 5045-5070

MSC (2000):
Primary 44A12; Secondary 47G10

Published electronically:
June 29, 2004

MathSciNet review:
2084410

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop an analytic approach to the Radon transform , where is a function on the affine Grassmann manifold of -dimensional planes in , and is a -dimensional plane in the similar manifold . For , we prove that this transform is finite almost everywhere on if and only if , and obtain explicit inversion formulas. We establish correspondence between Radon transforms on affine Grassmann manifolds and similar transforms on standard Grassmann manifolds of linear subspaces of . It is proved that the dual Radon transform can be explicitly inverted for , and interpreted as a direct, ``quasi-orthogonal" Radon transform for another pair of affine Grassmannians. As a consequence we obtain that the Radon transform and the dual Radon transform are injective simultaneously if and only if . The investigation is carried out for locally integrable and continuous functions satisfying natural weak conditions at infinity.

**[BCK]**Carlos A. Berenstein, Enrico Casadio Tarabusi, and Árpád Kurusa,*Radon transform on spaces of constant curvature*, Proc. Amer. Math. Soc.**125**(1997), no. 2, 455–461. MR**1350933**, 10.1090/S0002-9939-97-03570-3**[Ge]**I. M. Gel′fand,*Integral geometry and its relation to the theory of representations.*, Russian Math. Surveys**15**(1960), no. 2, 143–151 (Russian). MR**0144358****[Go]**Fulton B. Gonzalez,*Radon transforms on Grassmann manifolds*, J. Funct. Anal.**71**(1987), no. 2, 339–362. MR**880984**, 10.1016/0022-1236(87)90008-5**[GK1]**Gonzalez, F., and Kakehi, T.,*Pfaffian systems and Radon transforms on affine Grassmann manifolds*, Math. Ann.,**326**(2003), no. 2, 237-273.**[GK2]**-,*Dual Radon transforms on affine Grassmann manifolds*, Transactions of the Amer. Math. Soc. (to appear).**[Gr]**M. I. Graev,*A problem of integral geometry associated with a triple of Grassmann manifolds*, Funktsional. Anal. i Prilozhen.**34**(2000), no. 4, 78–81 (Russian); English transl., Funct. Anal. Appl.**34**(2000), no. 4, 299–301. MR**1818288**, 10.1023/A:1004165625544**[GR]**Grinberg, E. L., and Rubin, B.,*Radon inversion on Grassmannians via Gårding-Gindikin fractional integrals*, Annals of Math. (to appear).**[H1]**Sigurđur Helgason,*A duality in integral geometry; some generalizations of the Radon transform*, Bull. Amer. Math. Soc.**70**(1964), 435–446. MR**0166795**, 10.1090/S0002-9904-1964-11147-2**[H2]**Sigurdur Helgason,*The Radon transform*, 2nd ed., Progress in Mathematics, vol. 5, Birkhäuser Boston, Inc., Boston, MA, 1999. MR**1723736****[He]**Alexander Hertle,*Continuity of the Radon transform and its inverse on Euclidean space*, Math. Z.**184**(1983), no. 2, 165–192. MR**716270**, 10.1007/BF01252856**[Ku]**Árpád Kurusa,*Support theorems for totally geodesic Radon transforms on constant curvature spaces*, Proc. Amer. Math. Soc.**122**(1994), no. 2, 429–435. MR**1198457**, 10.1090/S0002-9939-1994-1198457-1**[MS]**W. R. Madych and D. C. Solmon,*A range theorem for the Radon transform*, Proc. Amer. Math. Soc.**104**(1988), no. 1, 79–85. MR**958047**, 10.1090/S0002-9939-1988-0958047-7**[Q]**Eric Todd Quinto,*Null spaces and ranges for the classical and spherical Radon transforms*, J. Math. Anal. Appl.**90**(1982), no. 2, 408–420. MR**680167**, 10.1016/0022-247X(82)90069-5**[Rad]**Radon, J.,*Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten*, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. - Nat. Kl.,**69**(1917), 262-277 (Russian translation in the Russian edition of S. Helgason, The Radon transform, Moscow, Mir, 1983, pp. 134-148).**[Ru1]**Boris Rubin,*Fractional integrals and potentials*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 82, Longman, Harlow, 1996. MR**1428214****[Ru2]**-,*Inversion formulas for the spherical Radon transform and the generalized cosine transform*, Advances in Appl. Math.,**29**(2002), 471-497.**[Ru3]**-,*Reconstruction of functions from their integrals over -planes*, Israel J. Math.,**141**(2004), 93-117.**[Ru4]**-,*Notes on Radon transforms in integral geometry*, Fract. Calc. Appl. Anal.,**6**(2003), no. 1, 25-72.**[So1]**Donald C. Solmon,*A note on 𝑘-plane integral transforms*, J. Math. Anal. Appl.**71**(1979), no. 2, 351–358. MR**548770**, 10.1016/0022-247X(79)90196-3**[So2]**Donald C. Solmon,*Asymptotic formulas for the dual Radon transform and applications*, Math. Z.**195**(1987), no. 3, 321–343. MR**895305**, 10.1007/BF01161760**[Str]**Robert S. Strichartz,*Harmonic analysis on Grassmannian bundles*, Trans. Amer. Math. Soc.**296**(1986), no. 1, 387–409. MR**837819**, 10.1090/S0002-9947-1986-0837819-6**[VK]**Vilenkin, N. Ja., and Klimyk, A. V., Representations of Lie groups and special functions, Vol. 2, Kluwer Academic Publishers, Dordrecht (1993). MR**94m:2200**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
44A12,
47G10

Retrieve articles in all journals with MSC (2000): 44A12, 47G10

Additional Information

**Boris Rubin**

Affiliation:
Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel

Email:
boris@math.huji.ac.il

DOI:
https://doi.org/10.1090/S0002-9947-04-03508-1

Keywords:
Radon transforms,
Grassmann manifolds,
inversion formulas

Received by editor(s):
May 13, 2003

Received by editor(s) in revised form:
September 11, 2003

Published electronically:
June 29, 2004

Additional Notes:
This work was supported in part by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).

Dedicated:
Dedicated to Professor Lawrence Zalcman on the occasion of his 60th birthday

Article copyright:
© Copyright 2004
American Mathematical Society