CHANGE OF RINGS IN DEFORMATION THEORY OF MODULES

RUNAR ILE

Abstract. Given a \(B \)-module \(M \) and any presentation \(B = A/J \), the obstruction theory of \(M \) as a \(B \)-module is determined by the usual obstruction class \(\alpha_A \) for deforming \(M \) as an \(A \)-module and a new obstruction class \(\alpha_J \). These two classes give the tool for constructing two obstruction maps which depend on each other and which characterise the hull of the deformation functor. We obtain relations between the obstruction classes by studying a change of rings spectral sequence and by representing certain classes as elements in the Yoneda complex. Calculation of the deformation functor of \(M \) as a \(B \)-module, including the (generalised) Massey products, is thus possible within any \(A \)-free 2-presentation of \(M \).

1. Introduction

In this article we study the following functor of infinitesimal deformations.

Definition 1. Let \(A \) be a (commutative) flat \(\mathcal{O} \)-algebra where \(\mathcal{O} \) is a local complete Noetherian ring with \(k \) as residue field. Let \(\overline{A} = A \otimes_{\mathcal{O}} k \) and let \(M \) be an \(\overline{A} \)-module. Define \(\text{Art}_\mathcal{O} \) to be the category of local commutative Artinian \(\mathcal{O} \)-algebras \(R \) with residue field \(k \) such that the composition \(\mathcal{O} \to R \to k \) equals the canonical map from \(\mathcal{O} \) to its residue field. Morphisms are maps of local \(\mathcal{O} \)-algebras. The deformation functor of \(M \) is a covariant functor

\[
\text{Def}^A_M : \text{Art}_\mathcal{O} \rightarrow \text{Sets},
\]

where \(\text{Def}^A_M(R) \) is the set of equivalence classes of deformations of \(M \) to \(R \). A deformation (or flat lifting) of \(M \) to \(R \) is an \(A \otimes_{\mathcal{O}} R \)-module \(M_R \), flat as an \(R \)-module together with an \(A_R \)-linear map \(\pi : M_R \to M \) with \(\pi \otimes_R k : M_R \otimes_R k \rightarrow M \). Two deformations are equivalent if they are isomorphic above \(M \). Maps are induced by tensorisation.

Remark 1. One natural choice for \(\mathcal{O} \) is as the hull of the deformation functor of \(\overline{A} \) as a \(k \)-algebra, with \(A \) the formally versal formal family which in particular is a flat \(\mathcal{O} \)-algebra with \(A \otimes_{\mathcal{O}} k = \overline{A} \). In the case \(\mathcal{O} = k \) we have \(\overline{A} = A \) and the article might be somewhat easier to read with this assumption.
More generally, let \(F : \text{Art}_O \to \text{Sets} \) be a covariant functor with \(F(k) \) a one-element set. M. Schlessinger [13] formulated a sufficient and necessary set of criteria for the existence of a complete local ring \(H \), called a (pro-representing) hull, and a formally versal formal family \(\{M_i\}_{i=1}^\infty \), a projective system with \(M_n \in F(H/nm_H^{n-1}) \), where \(n = m_H^2 + m_O H \) such that the induced map

\[
\rho : \text{Hom}^{\text{cont}}(O_{\text{alg.}/k}(H, -) \to F
\]

is formally smooth and an isomorphism on the relative Zariski tangent space. \(F \) is called pro-representable if \(\rho \) is an isomorphism. Most deformation functors have hulls if the relative Zariski tangent space of \(F \) is finite dimensional.

Example 1. Let \(\rho : \Pi \to \text{Gl}_n(k) \) be a continuous representation of a profinite group \(\Pi \) satisfying a \(p \)-finiteness condition, where \(p \) is the characteristic of the finite field \(k \). Define the deformation functor \(\text{Def}_\rho : \text{Art}_O \to \text{Sets} \) as equivalence classes of liftings \(\tilde{\rho} : \Pi \to \text{Gl}_n(R) \) of \(\rho \). Here \(O \) is a “coefficient ring” with residue field \(k \), typically \(O = W(k) \), the Witt ring of \(k \). If \(\Pi \) is the Galois group of a number field, one obtains what B. Mazur has termed deformation theory of Galois representations; cf. [17]. If \(A = O[[\Pi]] \) and \(M = k^n \), the characteristic of the finite field \(k \), this deformation functor is canonically isomorphic to the one in Definition [1](we have to allow for non-commutative algebras \(A \)). By applying the Schlessinger criteria, Mazur proved that \(\text{Def}_\rho \) in general has a hull, and is pro-representable if \(\rho \) is absolutely irreducible; see [10].

Example 2. If \(O = k \) is an algebraically closed field of any characteristic and \(M \) is a finitely generated \(A \)-module (and \(A \) is an algebraic \(k \)-algebra, i.e. the Henselisation of a finitely generated \(k \)-algebra at a maximal ideal), locally free on the complement of the closed point, there exist algebraic versal deformations of \(M \) [5] [22]. A. Ishii [12] has constructed a filtration of the versal base spaces (with reduced structure) of all reflexive modules (including the decomposable ones) on rational surface singularities and has determined the local deformation relation of the reflexive modules on the rational double points. These mini-versal base spaces are far from being (locally) “coarse” moduli spaces. In particular, the deformation functors of these reflexive modules restricted to Artinian rings are not pro-representable. Indeed there is only a finite set of isomorphism classes of reflexive modules of fixed rank on a quotient surface singularity, yet the singular versal base has complicated geometry.

Schlessinger did not provide any effective construction of the hull. The only known general method to compute \(H \) given \(M \) is via a natural obstruction class.

Definition 2. A small lifting situation is a surjective map \(\pi : R \to S \) in \(\text{Art}_O \), where \(\ker \pi \) is contained in the socle of \(R \), i.e. \(m_R \cdot \ker \pi = 0 \), and a deformation \(M_S \) of \(M \) to \(S \).

The obstruction class is then an element \(\sigma_\pi = \sigma_\pi(\pi, M_S) \in H^2(\ker \pi,) \), where \(H^2 \) is the second cohomology group of the object \(M \). If \(F = \text{Def}_M^A \), then \(\sigma_\pi = \sigma_\pi(\pi, M_S) \) and \(H^2 = \text{Ext}^2_F(M, M) \). The obstruction class is natural with respect to morphisms of the lifting situation. There exists a lifting of \(M_S \) to \(R \) (or a prolongation of the deformation \(M_S \) to the “thicker” Artinian neighbourhood Spec \(R \)) if and only if this obstruction class is zero. The obstruction class has been constructed for many deformation functors, e.g. [10] [11] [13]. For axiomatic approaches see [1] [6] [8].
If \(F \) has a hull, there is a universal element \(M_1 \in F(H_1) \), where \(H_1 = k[H^1] = k \oplus H^1 \) and \(H^1 \) is the relative Zariski tangent space; \(H^1 \cong F(k[\varepsilon]) \) (naturally a \(k \)-vector space). In the case \(F = \text{Def}_M^A \), \(H^1 = \text{Ext}^1_{\mathcal{F}}(M, M) \) and \(M_1 \) is given by the universal extension

\[
(1) \quad M_1 : \quad 0 \rightarrow M \otimes_k \text{Ext}^1_{\mathcal{F}}(M, M) \rightarrow M_1 \rightarrow M \rightarrow 0.
\]

The construction of \(H \) then proceeds through successive “prolongations” of \(M_1 \) to thicker Artinian \(\mathcal{O} \)-algebras through small lifting situations, at each step calculating the obstruction. If this is done correctly, one obtains power series in \(T \), which is naturally compatible with the obstruction class \(o \). This defines an obstruction map \(o \colon T^2 \rightarrow T^1 \), which is naturally compatible with the obstruction class \(o \) (see Definition 5), such that \(H = T^1 \otimes T^2 \mathcal{O} \).

The existence of an obstruction map is provided by O. A. Laudal rather abstractly for a deformation functor of a small category of algebras in [14, Thm. 4.2.4] (see also V. P. Palamodov [18] Thm. 5.6) (without proof) for compact analytic manifolds and for \(\text{Def}_M^A \) and \(\mathcal{O} = k \) with explicit Yoneda-representations of the generalised Massey products in [15]. For an axiomatic existence theorem, see [8, Thm. 2.3.10]. It shows that the existence of a natural obstruction class, together with a natural action of the tangent space on the set of liftings in a small lifting situation, implies the existence of an obstruction map for \(F \). Once we have an obstruction map, the general Krull dimension estimate

\[
\dim_k H^1 \geq \dim_{\text{Krull}} H - \dim_{\text{Krull}} \mathcal{O} \geq \dim_k H^1 - \dim_k H^2
\]

follows. (See also [13].)

In practice it is difficult to give non-trivial results about the obstruction map; the usual application is some variation of \(H^2 = 0 \Rightarrow H \) is smooth. In fact, very few classes of examples of deformation functors have been given for which anything beyond the general Krull dimension estimate is known. By studying modules, one can at least calculate examples as there exists an effective obstruction algorithm.

In the present paper we provide a refinement of the obstruction map for modules which has both theoretical and computational consequences. For an application of these ideas, see [9].

Let \(B \) be a flat \(\mathcal{O} \)-algebra which is a quotient of \(A \), let \(J = \ker(A \rightarrow B) \) and assume \(M \) is a \(\overline{\mathcal{F}} = B \otimes \mathcal{O} k \)-module as \(\mathcal{A} \)-module, i.e. that \(\overline{\mathcal{F}} = J \otimes \mathcal{O} k \subseteq \text{Ann}_{\mathcal{F}}(M) \).

Suppose we want to study the deformation functor of \(B \)-modules \(\text{Def}_M^B \). The \(\overline{\mathcal{F}} \)-cohomology of \(M \) may be complicated while \(A \) can be chosen as a simpler ring. There is a natural injective map \(\text{Def}_M^B \rightarrow \text{Def}_M^A \) and the ideal \(J \) acts on an \(\mathcal{A} \)-deformation \(M_R \) of \(M \) to \(R \) through the \(A_R \)-action. Let \(\text{Def}_M^{(A,J)} \subseteq \text{Def}_M^A \) be the sub-functor of \(A \)-deformations annihilated by \(J \).

Lemma 1. Let \(A \) and \(B \) be flat \(\mathcal{O} \)-algebras and \(M \) a \(\overline{\mathcal{F}} = B \otimes \mathcal{O} k \)-module. Let \(J \) be an ideal in \(A \) and assume \(B = A/J \). Then

\[
\text{Def}_M^B \cong \text{Def}_M^{(A,J)}. \]

The main idea in this paper emerges from Lemma 1. Lift \(M \) as an \(A \)-module with trivial \(J \)-action and only use \(\mathcal{A} \)-cohomology to characterise the tangent space and the obstructions. In Theorem we give a new obstruction class \(o \) which exists (in a
small lifting situation) if the obstruction \(o_\mathcal{A} \) for lifting \(M \) as \(A \)-module is zero, such that \(o_\mathcal{A} = 0 \) if and only if there exists an \(A \)-lifting with trivial \(J \)-action. In fact \(o_\mathcal{A} \) will sit in the cokernel of a natural map \(\partial_J : \text{Ext}_A^1(M, M) \to \text{Hom}_A(J, \text{End}_A(M)) \). Moreover, the kernel of this map is the tangent space of \(\text{Def}^A_M \).

With two natural obstruction classes we construct two obstruction maps \((o^A, o^J) \), in Theorem 2 which are compatible with the obstructions (see Definition 5). The obstruction classes are defined if the cohomology \(k \)-vector spaces are of countable dimension, as in [14]. Remark how these maps depend on each other. In particular, it is not true that \(o^A \) in the pair \((o^A, o^J) \) is induced by \(o^A \) for \(\text{Def}^A_M \) as we clearly see in Example 5. This example also shows that much of the obstruction space is not necessarily “hit” by obstructions (at least as long as we do not deform over non-commutative Artinian algebras). Theorem 3 compares \((o^A, o^J) \) with the traditional \(o^A \) and is based on the relations of the various obstruction classes which are found by investigating maps in a change of rings spectral sequence, which is undertaken in Section 4 and Section 5. In particular: Theorem 4 ties several of our obstruction classes together by a cup product with the obstruction class for lifting \(M \) non-flat to \(\mathcal{A}/\mathcal{J} \). Finally, in Section 6 we give three obstruction calculations. In Example 5 and 7 we find obstructions in mixed characteristic. In Example 5 the obstruction ideal is given as a regular sequence (at least in an infinite set of cases) with two elements while \(\dim_k \text{Ext}_B^2(M, M) = 4 \). Indeed it might be a good idea to take a look at the examples in Section 6 before reading Section 2.

For actual calculation of the obstruction power series, one can lift a free resolution of the module; see [15]. The universal deformation to the relative Zariski tangent space of the deformation functor is given by perturbing the differentials in the resolution with \(\text{Yoneda} \)-representations for a \(k \)-basis of \(\text{Ext}^1(M, M) \). The quadratic obstruction is given in terms of cup products and the higher degree obstruction as generalised Massey products which are represented as composition products in the Yoneda algebra. It is therefore not sufficient for our purposes to work in the derived category, and our results describing maps in the change of rings spectral sequence and the comparison of obstruction classes is done by giving explicit representations in the appropriate Yoneda algebra of a free complex. Our result enables the obstruction calculus to be performed entirely within a (truncated) Yoneda complex of an \(A \)-free resolution of the \(B \)-module \(M \). A formal proof of this (in the case \(\mathcal{O} = k \)) is given in [8, Thm. 3.3.2]; see also Example 5.

For explicit non-trivial calculations of obstructions (given by cup products) for the Hilbert functor of space curves, see [23, 7]. A. Siqveland gave the local equations for the compactified Jacobian of the \(E_6 \) curve singularity and found the degeneracy diagram of the rank 1 torsion free modules in [20] by calculating the obstruction maps. The Massey product algorithms are given in [21]. Similar ideas have recently been used by I. C. Borge and O. A. Laudal [3] to solve the modular isomorphism problem for \(p \)-groups with \(\mathbb{F}_p \)-coefficients. See also [2].

2. The \(J \)-obstruction class

In this section we construct 3 obstruction classes for lifting a module in a relative lifting situation.

Let \(A \to B \) be any surjective ring homomorphism and let \(M \) and \(N \) be \(A \)-modules with \(A \)-free resolutions \(F \) and \(F' \), respectively. The corresponding Yoneda complex is the differential graded module \(\text{Hom}^*_A(F, F') \), where \(\text{Hom}^*_A(F, F') = \)
Hom\(_A(F[n], F')\) with differential \(\partial\) induced from the differentials \(d\) and \(d'\) on \(F\) and \(F'\), respectively. If \(\xi \in \text{Hom}^i_A(F, F')\), i.e. \(\xi = (\xi_i)_i\) with \(\xi_i : F_{i+n} \to F'_{i'}\), then \(\partial \xi = d' \xi - (-1)^n \xi d = (d'_{i+1} \xi_{i+1} - (-1)^n \xi_i d_{i+1+n})_i\). We have \(\text{Ext}^n_A(M, N) \cong \text{Ext}^n_A(M, N)\). Our first objective is to define a lifting of a Tor-action on \(\text{Ext}^A(M, N)\) to the Yoneda complex, which will enable us to study the \(J\)-action on the \(A\)-deformations of \(M\). Assume that \(M\) and \(N\) are \(A\)-modules and let \(E\) be an \(A\)-free resolution of the \(A\)-module \(B\).

Let \(m : E \otimes_A F \to F\) and \(m' : E \otimes_A F' \to F'\) lift \(B \otimes_A M \cong M\) and \(B \otimes_A N \cong N\), respectively, and see that for \(e \in E\), \(m\), \(m'\) give \(m(e) \in \text{End}_A(F)\), respectively, \(m'(e) \in \text{End}_A(F')\). Define
\[
\partial_{A/B} : E \longrightarrow \text{End}_A^\bullet(\text{Hom}_A^\bullet(F, F'))
\]
by \(\partial_{A/B}(e)(\varphi) = m'(e)\varphi - (-1)^{|\varphi||e|} \varphi m(e)\), where \(\varphi \in \text{Hom}_A^\bullet(F, F')\). Clearly \(\partial_{A/B}\) depends on the choices made.

Proposition 1. \(\partial_{A/B}\) induces a canonical map of graded \(B\)-modules
\[
\text{Tor}_n^A(B, B) \longrightarrow \text{End}_A^\bullet(\text{Ext}_n^A(M, N))
\]
making \(\text{Ext}_n^A(M, N)\) a \(\text{Tor}_n^A(B, B)\)-module. In the case \(M = N\), \(\text{Ext}_n^A(M, M)\) is an algebra-module and \(\text{Tor}_n^p(A, B)\) acts as degree \(p\)-derivations. The map is natural in the sequence \((A \to B, M, N)\).

Proof. One calculates
\[
\partial_{A/B}(e)(\partial \varphi) = \pm \partial(\partial_{A/B}(e)(\varphi)),
\]
hence we get induced a \(\partial_{A/B} : E \longrightarrow \text{End}_A^\bullet(\text{Ext}_n^A(M, N))\). It factorises via \(B \otimes_A E\) and one again calculates
\[
\partial_{A/B}(d \varphi)(\varphi) = \pm \partial(\partial_{A/B}(\varphi)(\varphi))
\]
if \(\partial \varphi = 0\). We get a map
\[
H(B \otimes_A E) \longrightarrow \text{End}_A^\bullet(\text{Ext}_n^A(M, N))
\]
which is independent of the choices made. \(\square\)

Definition 3. Let \(J = \ker(A \to B)\) and define
\[
(2) \quad \partial_J : \text{Ext}_1^A(M, N) \longrightarrow \text{Hom}_A(J, \text{Hom}_A(M, N))
\]
to be the adjoint of \(\partial_{A/B}\) restricted to \(J\) through \(\text{Tor}_1^A(B, B) \cong J/J^2\). In terms of Yoneda representations (see notation before Proposition[1]), if \(E_1 = A' \to J = (f_1, \ldots, f_r)\) and \(m_1 : E_1 \otimes_A F_0 \to F_1\) is \(A\)-linear such that \(d_1 m_1\) induces the multiplication with \((f_1, \ldots, f_r)\) on \(F_0\), \(J \otimes_A F_0 \to F_0\), then \(\partial_J(\xi)\) is defined as the adjoint of the class in \(\text{Hom}_A(J \otimes_A M, N)\) induced by \(\tilde{\xi} = E_1 \otimes_A F_0 \to F_0\), where \(\xi_0 : F_1 \to F_0\) represents \(\xi\).

For convenience we will also use the \(\partial_J\)-notation in adjoint situations, as in the next theorem.

We are now in the position to formulate necessary and sufficient conditions for the existence of deformations of an \(A\)-module with trivial \(J\)-action, i.e. a \(B\)-module, in a small lifting situation. The standard result here, as given in [15], is to produce a class \(o_0\) in the \(B\)-cohomology of the situation, for modules that would be \(\text{Ext}_2^B\), which vanish if and only if there is a lifting. We will instead produce two classes (actually three), the \(o_\alpha\) in \(\text{Ext}_2^A\) which is the old obstruction for lifting \(A\)-modules,
and if $o_A = 0$, a new class o_J, also given by A-cohomology such that $o_J = 0$ if and only if there exists an A-lifting with trivial J-action. These two classes will enable us to characterise the hull of Def_M^B by two obstruction maps (see Theorem 2 in the same way as o_B gives the tool for constructing the obstruction map in [15].

We formulate the result in the following relative lifting situation: Suppose A and B are flat O-algebras, where O is a commutative ring. Let $A \to B$ and $\pi : R \to S$ be surjective maps of O-algebras with kernels the ideals J and I, respectively. Let M be a $B_S = B \otimes_O S$-module (similarly $J_S = J \otimes_O S$ etc.). Assume $I^2 = 0$.

Definition 4. A lifting of M to B_R is a B_R-module M_R and a B_R-linear map $\pi : M_R \to M$ with $\pi \otimes S : M_R \otimes_R S \xrightarrow{\cong} M$, such that $\text{Tor}_i^R(M_R, S) = 0$.

Theorem 1. In a relative lifting situation as above we have:

i) There exists a class $o_{A_S} = o_{A_S}(\pi, M) \in \text{Ext}_A^2(M, M \otimes_S I)$ such that $o_{A_S} = 0$ if and only if there exists a lifting of M to A_R.

ii) Given a lifting M_R of M to A_R, there exists a class $o(J_S) \in \text{Hom}_A(M_S \otimes_A M, M \otimes_S I)$ such that $o(J_S) = 0$ if and only if M_R is a B_R-module as an A_R-module.

iii) If $o_{A_S} = 0$ there exists a class $o_{J_S} = o_{J_S}(\pi, M) \in \text{coker} \partial_{J_S}$, where $\partial_{J_S} : \text{Ext}_A^1(M, M \otimes_S I) \to \text{Hom}_A(J_S \otimes_A M, M \otimes_S I)$ is as given in Definition 3, such that $o_{J_S} = 0$ if and only if there is a lifting of M to B_R.

iv) Assume $o_{A_S} = 0 = o_{J_S}$. Then there is a transitive and effective action of $\text{ker} \partial_{J_S}$ on the set of isomorphism classes of liftings of M to B_R over M.

Finally, all classes and the action are natural for flat maps of $A \to B$ and of $R \to S$ and the induced modules. If M is S-flat, the naturality follows for all maps of $R \to S$.

Remark 2. In the case $O = k = A = B$ (and $J = 0$) one recovers the standard result and our construction of o_J is as in [15].

Remark 3. By Lemma 2, o_{A_S} is in the image of the natural map $\text{Ext}_A^2(B_S, A_S) \to \text{Ext}_A^2(A_S, A_S)$.

Proof. Since we are mainly interested in the deformation case, we give a proof under the additional assumption of either M or I being S-flat. The complex we use lends itself best to these cases. At the end we comment on the general situation.

i) Let $F = (F, d)$ be an A_S-free resolution of M. By the freeness we can lift the differential to a map \tilde{d} of the graded A_R-free module \tilde{F} which in each degree has the same rank as F, thus $\tilde{d} \otimes_R S = d$. If $\tilde{F} = (\tilde{F}, \tilde{d})$ were a complex, it would be a resolution of a lifting of M to A_R. Tensoring \tilde{F} with the short exact sequence $0 \to I \to R \xrightarrow{\pi} S \to 0$ of R-modules gives an exact sequence $0 \to F \otimes_S I \to \tilde{F} \xrightarrow{\pi} F \to 0$ of graded modules since A is flat as O-module. It follows that $(\tilde{d})^2$ is induced by a map $\rho \in Z^2 \text{Hom}_A(F, F \otimes_S I)$, i.e. a 2-cocycle in the Yoneda complex. Define $o_{A_S} = o_{A_S}(\pi, M) := [\rho] \in \text{Ext}_A^2(M, M \otimes_S I)$. This element is independent of the resolution F and the choice of lifting (\tilde{F}, \tilde{d}) and is the obstruction for lifting M along π. If $o_{A_S} = 0$, there is a $\tau \in \text{Hom}_A(F, F \otimes_S I)$—this is the place where we use the additional hypothesis—with $\partial \tau = \rho$. We perturb \tilde{d} by τ and get a differential $d_R = \tilde{d} - \tau \pi$. Hence $F_R = (\tilde{F}, d_R)$ is a complex which
is an extension of resolutions (by the additional hypothesis again), thus itself is a
resolution of $M_R := H_0(F_R)$. Clearly $M_R \otimes_R S \cong M$ and $\text{Tor}^R_1(M_R, S) = H_1(F) = 0$, in fact M_R is R-flat if M is S-flat. If there is a lifting M_R of M, $o_{A_S} = 0$ by the
independence of the choices we claimed above.

ii) To find the obstruction for M_R to be a B_R-module as A_R-module, we lift the
canonical isomorphism $m_0: A_S \otimes A_S F \to F$ to a map of complexes $m: E_S \otimes A_S F \to F$, where $\ldots \to E_2 \to E_1 \to J$ gives an A-free resolution of J which, together
with $J \subset A = E_0$, gives an A-free resolution E of B, and $E_S := E \otimes_S S$ gives
an A_S-free resolution of B_S. The lifting m exists since M is a B_S-module as
in Proposition 1, i.e. since J_S's action on F is homotopically trivial. Choose an
$m : E_R \otimes A_R F_R \to F_R$ with $m \otimes_R S = m$ and with $m_i : (E_R) \otimes F_R$
the canonical
isomorphism $A_R \otimes A_R F_R \cong F_R$. Then we can view m as an attempt to kill the
action of J_R on F_R. We find $\partial(m) = d(F_R) \circ m - m \circ d(F \otimes F_R)$ to be induced by a $\rho \in \text{Ext}^1_{A_S}(E_{\geq 1} \otimes A F, F \otimes S I)$, where $E_{\geq 1} = [\ldots \to E_2 \to E_1]| [+1]$. Define

$$o_{(JS)} := [\rho] \in \text{Hom}_{A_S}^0(E_{\geq 1} \otimes A F, F \otimes S I) \cong \text{Hom}_{A_S}^0(J_S \otimes A_S M, M \otimes S I).$$

This class only depends on the lifting M_R and is the obstruction for M_R to be a
B_R-module as A_R-module. If $o_{(JS)} = 0$, there is a $\tau \in \text{Hom}_{A_S}^0(E_{\geq 1} \otimes A F, F \otimes S I)$
with $\partial(\tau) = \rho$. Perturbing m with τ gives $m_R = m - \tau \pi$ with $\partial(m_R) = 0$.

iii) The $o(\cdot)$ only checks our specific choice of lifting M_R given by d_R; other
choices of M_R could be better. To obtain other A_R-liftings we perturb d_R by
$\xi \in \text{Z}^1(\text{Hom}_{A_S}(F, F \otimes S I))$ to $d'_R = d_R + \xi \pi$. This gives a new differential ∂' and

$$\partial'((m)) = (d_R + \xi \pi)m - m(d_{E \otimes F_R'})$$

$$= d_R m - (-1)^{[E]}m(1 \otimes d_R) - m(d_E \otimes 1) + \xi \pi m - (-1)^{[E]}m(1 \otimes \xi \pi)$$

$$= (\rho + \partial_{A_S/B_S}(\xi)) \pi,$$

where $\partial_{A_S/B_S} : \text{Hom}_{A_S}(F, F \otimes S I) \to \text{Hom}_{A_S}(E \otimes_A F, F \otimes S I)$ up to adjointness is the one in Proposition 1. Define the class

$$o_{JS} = o_{JS}(\pi, M) := [o(\cdot)] \in \text{coker} \partial_{JS}$$

$$= \text{coker} (\text{Ext}^1_{A_S}(M, M \otimes S I) \to \text{Hom}_{A_S}(J_S \otimes A_S M, M \otimes S I)).$$

It depends only on M and π, and is the obstruction for lifting M to B_R if there
exists a lifting of M to A_R. If $\partial'((m)) = \partial(\tau)\pi$, with $\tau \in \text{Hom}_{A_S}^0(F, F \otimes S I)$, we can perturb m to $m' = m - \tau \pi$ and $\partial'(m') = (\rho + \partial_{A_S/B_S}(\xi) - \partial \tau)\pi = 0$ so m'
gives a homotopy to zero for the action of J_R on F'_R, i.e. M'_R is a B_R-module as
A_R-module.

iv) It also follows that any $\xi' \in \text{Z}^1(\text{Hom}_{A_S}(F, F \otimes S I))$ with $\partial_{A_S/B_S}(\xi') = 0$ gives
another lifting to B_R by $d''_R = d'_R + \xi' \pi$ and that the difference $d'_R - d''_R$ of two
liftings to B_R gives an element in $\text{ker} \partial_{A_S/B_S}$. They are isomorphic if and only if
this element is zero in $\text{Ext}^1_{A_S}(M, M \otimes S I)$.

For the general case, the main difference is that $F \otimes S I$ is not necessarily a resolution,
and a resolution F_R of M_R will give $H_*(F_R \otimes_R S) \cong \text{Tor}^R_*(M_R, S)$ and cannot
therefore in general be taken as a lifting \hat{F} of F. However, only the initial part

$$F_0 \xrightarrow{\partial_1} F_1 \xrightarrow{\partial_2} F_2$$

$$E_1 \otimes F_0$$
where \(d_1 m_1 \) equals the map induced by the multiplication by (generators of) \(J_S \) on \(F \), is essential to the existence of liftings to \(A_R \) and to \(B_R \) (as will be exploited later on). The \(o_{A_S} \) is induced by \(d_1 d_2 \) and if \(o_{A_S} = 0 \) modify \(d_1 \) and \(d_2 \) by \(\tau_1 \) and \(\tau_2 \) as before. \(M_R = H_0(\mathcal{F}) \) has \(M_R \otimes_R S = M \). In a resolution \(F_R \) for \(M_R \) we can choose \((F_R)_i = F_i \) for \(i = 0, 1 \) and \((F_R)_2 = F_2 \oplus K_2 \). Then the Tor-condition follows:

\[
\Tor^1_F(M_R, S) = H_1(F_R \otimes_R S) = \frac{\ker(F_1 \longrightarrow F_0)}{\text{im}(F_2 \oplus (K_2 \otimes_R S) \longrightarrow F_1)} = 0,
\]

so \(M_R = H_0(\mathcal{F}) \) is certainly a lifting. The \(o(J_S) \) is defined as induced by \(d_1 \tilde{m}_1 - m_{E_1} \), where \(m_{E_1} : E_1 \otimes_A F_0 \to F_0 \) is induced by the multiplication of \(J_R \) on \(F_0 \). The rest follows as above.

Remark 4. We shall primarily be interested in the deformation situation, Definition 1 and in the case of a small lifting situation, Definition 2. If \(M_S \) is a deformation of \(M \) to \(S \) in Art\(R \) one has natural isomorphisms like \(\text{Ext}^q_A(M_S, M_S \otimes_S I) \cong \text{Ext}^q_A(M, M \otimes_I k) \) and \(\text{Hom}_{A_S}(J_S \otimes_{A_S} M_S, M_S \otimes_S I) \cong \text{Hom}_A(J \otimes I M, M) \otimes_I k \). To simplify the notation in the deformation situation, let \(\partial_1 \) be a lifting of this resolution. One will therefore have conditions for lifting the equations \(\partial_1 \psi = 0 \) which create the obstruction \(o_1 \) in \(\text{Ext}^2_A(M, M) \). Instead Theorem 1 offers the possibility of lifting \(\psi \) corresponding to deformations of \(M \) as an \(A \)-module for which the obstruction \(o_1 = 0 \) since \(\text{Ext}^1_A(M, M) = 0 \) for \(i > 1 \), such that there is a lifting of \(\psi \) retaining the relation \(\partial_1 \psi = f \cdot \id_G \). This gives the non-trivial obstruction \(o_1 \) (with \(J = (f) \)) in the cokernel of \(\partial J = \text{Ext}^1_A(M, M) \to \text{End}_A(M) \) where \(\partial J = \psi \); see Definition 3. Even in this most simple example the advantages are clear: The \(A \)-cohomology is easier than the \(B \)-cohomology and the relation \(f = 0 \) is eliminated from the obstruction calculus. Further simplifications are possible in the case \(\text{rk}_B(M) = 1 \) as we show in 9.
3. THE OBSTRUCTION MAPS

We define obstruction maps α^o and α' for the obstructions o_A and o_J in Definition 5 and give a structure theorem for the hull of $\text{Def}^B_M(H)$ in Theorem 2. A comparison of the A- and J-obstruction maps with the B-obstruction map is given in Theorem 3.

For greater flexibility we will define obstruction maps as continuous maps between local \mathcal{O}-algebras which have countably dimensional Zariski tangent spaces. Let V be a countably-dimensional vector space over k with a given basis $\{e_i\}_{i=1}^{\infty}$. The set of sub-vector spaces of V which contain almost all the basis elements defines a topology on V such that $V^* = \text{Hom}_{k,\text{vec}}(V,k)$ also is countably dimensional, and if we fix the dual basis $\{e_i^*\}_{i=1}^{\infty}$ for V^*, then $V^{**} \cong V$ canonically. Let $T = \hat{\text{Free}}_{\mathcal{O}}(V^*)$ be the free \mathcal{O}-algebra in variables $\{x_i\}_{i=1}^{\infty}$ completed in the topology given by the basis I_{ij} of open ideals around 0, where $I_{ij} = m_i \mathcal{O} + (x_1, x_2, \ldots)^j + (x_1, x_{i+1}, \ldots)$. We insist on the continuous identification of the relative cotangent vector space $m/(m^2 + m_{\mathcal{O}}T)$ of T with V^* where $\pi_i = e_i^*$, hence also a canonical continuous identification of the relative Zariski tangent space of T with V. Suppose $\{H_n\}_{n=1}^{\infty}$ is a projective system of surjections in $\mathfrak{Art}_{\mathcal{O}}$. Then $H := \lim H_n$ with the induced topology is a continuous quotient of a T for some V. Conversely every continuous quotient of T can be given as such a projective limit. Define $\text{Def}^B_M(H) = \lim \text{Def}^B_M(H_n)$.

Recall the map ∂_J with $N = M$; see Definition 3. Assume for the rest of this section that the k-vector spaces $H^2_A = \text{Im}(\text{Ext}_T^2(M,M) \to \text{Ext}_A^2(M,M))$, $H^1_J = \text{coker} \partial_T$ and $H^1 = \ker \partial_T$ all are of countable k-dimension and for any choice of k-bases let T_A^A, T_J^J and T^1 be the corresponding complete \mathcal{O}-algebras with these vector spaces as relative Zariski tangent spaces.

Definition 5. In the situation described before Lemma 1, two obstruction maps for the obstructions o_A and o_J in Theorem 1 (see Remark 1) are continuous \mathcal{O}-algebra homomorphisms $\alpha^o : T^2_A \to T^1$ and $\alpha' : T^2_J \to T^1$ satisfying the following conditions. If $H := (T^1 \hat{\otimes}_{\mathcal{O}} T^2_A) \hat{\otimes}_{\mathcal{O}} T^2_J \mathcal{O}$ there is a formal deformation \hat{M} in $\text{Def}^B_M(H)$ such that for any small lifting situation, Definition 2 there is a continuous $\sigma : H \to S$ with $\sigma_\hat{M} = M_S$ and for any such σ we have that the adjoint o^a_σ of $o_A(\pi, M_S) \in H_A^2 \otimes_{k} I$ makes the following diagram commutative:

\[
\begin{array}{cccccc}
m_{T^2_A}/(m^2_A + m_{\mathcal{O}} T^2_A) & \xrightarrow{=} & H^2_A & \xrightarrow{\sigma^a_\sigma} & J \\
m_{T^2_J} \xrightarrow{\sigma} & T^2_J & \xrightarrow{\alpha^a} & T^1 & \xrightarrow{\theta} & R \\
H & \xrightarrow{\sigma} & S
\end{array}
\]

where θ is continuous and lifts σ and $X = A$. If $o_A(\pi, M_S) = 0$, then the adjoint o^a_σ of $o_J(\pi, M_S) \in H^2_J \otimes_{k} I$ makes the diagram commutative with $X = J$.

Remark 5. The existence of two obstruction maps as in Definition 4 implies that (H, \hat{M}) is a hull of Def^B_M; see the last part of the proof of Theorem 2.

The following theorem connects the cohomologically defined and thus linear obstruction classes in Theorem 1 with the highly non-linear obstruction ideal. The proof shows how the former are used to construct the latter.
Theorem 2. Let A and B be flat \mathcal{O}-algebras with $B = A/J$ for an ideal $J \subset A$. Let M be a $\mathcal{B} = \mathcal{A}/\mathcal{J}$-module, where $\mathcal{X} = X \otimes \mathcal{O}k$ for $X = A, B$ and J. Then Def^B_M is a functor with two obstructions in H^2_A and H^2_J such that if H^1, H^2_A and H^2_J have countable k-dimension, there are obstruction maps

$$o^A : T^2_i \to T^1 \quad \text{and} \quad o^J : T^2_j \to T^1$$

for the obstructions o_A and o_J. In particular the hull of $\text{Def}^{(A,J)}_M = \text{Def}^B_M$ is given as

$$H \equiv (T^1 \otimes_{T^2_i} \mathcal{O}) \otimes_{T^2_j} \mathcal{O}.$$

Remark 6. The statement implicitly claims the existence of k-vector bases and hence topologies as described before Definition 5 and maps continuous with respect to these topologies.

Remark 7. If A is a finitely generated k-algebra and M is a finitely generated A-module, then the $\text{Ext}^i_{\mathcal{A}}(M, M)$ have countable k-dimensions since they are finitely generated as \mathcal{A}-modules and A has countable k-dimension. It follows that H^1, H^2_A and H^2_J have countable k-dimensions.

Proof. Assume first that $\dim_k H^1 < \infty$. Let $T^1_n = T^1 / m^n - n$, where $n = m^2 + m_0 T^1$. The universal extension $[1]$ gives a canonical deformation $\pi_i : M_i \to M$ of T^1 to T^2 as a B-module. There is no obstruction for doing this, thus (o^A, o^J) are the trivial maps. We construct approximations (o^A_n, o^J_n) to (o^A, o^J) by induction on n. Suppose $o^A_{n-1}(y_i) = f^{n-1}_i$, $o^J_{n-1}(z_j) = g^{n-1}_j$ in T^1 for all i, j, where $T^2_A = O[y_1, y_2, \ldots]$, $T^2_J = O[z_1, z_2, \ldots]$ such that there is a deformation M_{n-1} of M to $H_{n-1} = T^1_{n-1}/(f^{n-1}_i) + (g^{n-1}_j)$ as B-module lifting M_1. Define the A-obstruction test algebra $G^A_n = T^1_n/(f^{n-1}_i) + (g^{n-1}_j)$ and let $\pi^A_n : G^A_n \to H_{n-1}$ be the natural map. If $\pi : R \to S$ and M_S is a small lifting situation, Definition 2 with $m^{n-2}_S n_S = 0$ and $\theta : T^1 \to R$ lifts a map $\sigma : H_{n-1} \to S$ as in \Box, then θ factorises through G^A_n. Let $I^A_n = \ker \pi^A_n$ which is a k-vector space as a G^A_n-module. By induction it will follow that $I^A_n = (f^{n-1}_i)/(g^{n-1}_j)^m \subseteq G^A_n$, and the elements (f^{n-1}_i, g^{n-1}_j) can be assumed to be linearly independent. There is a natural map $G^A_n \to G^A_{n-1}$ lifting $H_{n-1} \to H_{n-2}$, by the naturality of the obstruction class o_A, Theorem 1 $o_A(\pi^A_n, M_{n-1}) = \sum y_i \otimes I^A_n$ maps to

$$o_A(\pi^A_n, M_{n-1}) = \sum y_i \otimes (f^{n-2}_i + f^{n-1}_i) \in H^2_A \otimes k I^A_n,$$

where $(f^{n-2}_i + f^{n-1}_i) \subseteq m^{n-3}n$ under the (assumed) injective map $I^A_n \cong (f^{n-1}_i)/(g^{n-1}_j) \hookrightarrow I^A_{n-1}$. Hence $f^{n}_i = f^{n-1}_i + f^{n}_i$ for some $f^{n}_i \in m^{n-2}n$.

Choose a lifting $f^{n}_i \in m^{n-2}n \subseteq T^1$ of f^{n}_i and set $o^A_n(z_i) = f^{n}_i = f^{n-1}_i + f^{n}_i$ for all i.

Define the J-obstruction test algebra $G^J_n = T^1_n/(g^{n-1}_j)$ and let $\pi^J_n : G^J_n \to H_{n-1}$ be the natural map. Suppose $o_J(\pi, M_S) = 0$. Since o_A is natural and $o_A(\pi^A_n, M_{n-1}) = H^2_A \otimes k I^A_n$ maps to 0 in $H^2_A \otimes k \ker \pi, J_i \to 0$ and the induced map $G^J_n \to R$ factorises through G^J_n. Let $I^J_n = \ker \pi^J_n$. By induction it will follow that $I^J_n = (g^{n-1}_j)/(m^{n-2}n) \subseteq G^J_n$. There is a natural map $G^J_n \to G^J_{n-1}$ lifting $H_{n-1} \to H_{n-2}$, by the naturality of the obstruction class o_J, $o_J(\pi^J_n, M_{n-1}) = \sum z_j \otimes (g^{n-1}_j) \in H^2_J \otimes k I^J_n$ maps to $o_J(\pi^J_n, M_{n-1}) = \sum z_j \otimes (g^{n-1}_j) \in H^2_J \otimes k I^J_n$, and as
above it follows that $\mathcal{F}_j = \mathcal{F}^{n-1}_j + \mathcal{F}^n_j$ for some $\mathcal{F}^n_j \subseteq G^{n-2}_j$, lifting to T^1 gives $\alpha_{j}^n(z_j) = g^n_j = g^{n-1}_j + g^n_j$ with $g^n_j \subseteq m^{n-2} \subseteq T^1$. Let $H_n = T^1_n/(\mathcal{F}^n_j) + (\mathcal{F}^n_j)$, if $\pi_n : H_n \to H_{n-1}$ is the natural map, $\alpha_{n}(\pi_n, M_{n-1}) = 0 = \alpha_{j}(\pi_n, M_{n-1})$, hence by Theorem 4 there is a lifting M_n to H_n of M_{n-1}.

Remark that M_n is H_n-flat and thus gives a deformation of M to H_n as B-module lifting M_{n-1}: There is a change of rings spectral sequence

$$E^2_{pq} = \text{Tor}^H_{p+q}(M_n, H_{n-1}), N) \Rightarrow \text{Tor}^{H_n}_{p+q}(M_n, N),$$

and the 5-term exact sequence

$$\ldots \to \text{Tor}^H_{1}(M_n, H_{n-1}) \otimes H_{n-1} \to \text{Tor}^H_{1}(M_n, N) \to \text{Tor}^{H_n}_{p+q}(M_n, N) \to 0$$

implies that $\text{Tor}^H_{1}(M_n, N) = 0$ for any H_{n-1}-module N since $\text{Tor}^H_{1}(M_n, H_{n-1}) = 0$ by assumption and M_{n-1} is H_{n-1}-flat by induction. If N is any H_n-module, there is a short exact sequence of H_n-modules $0 \to NI \to N \to N/NI \to 0$ with $I = \ker(H_n \to H_{n-1})$, where both NI and N/NI are H_{n-1}-modules as H_n-modules, hence we have $\text{Tor}^H_{1}(M_n, N) = 0 = \text{Tor}^{H_n}_{1}(M_n, N/NI)$ which implies $\text{Tor}^{H_n}_{1}(M_n, N) = 0$, so M_n is H_n-flat.

To show that we may assume $I^A_{n+1} = (f^n_i) \oplus (\mathcal{F}^n_j) \otimes m^{n-1} \subseteq I^A_n$ with $(\mathcal{F}^n_j)_{i,j}$ a k-linearly independent set, let $\varphi^A_n : (I^A_n)^* \to H^A_n$ correspond to $\alpha_{n}(\pi_n^A, M_{n-1})$ under the natural k-isomorphism $H^A_n((I^A_n)^*, H^A_n) \cong H^A_n \otimes_k I^A_n$. Suppose, if necessary, the by induction chosen k-linearly independent set $\{y^i_1, \ldots, y^i_{n-1}\}$ so that $\{y^n_1, \ldots, y^n_n\}$ gives a k-basis for $\text{im} \varphi^A_n \subseteq H^A_n$. Then there can be no k-relations among the y^i_j, where $\alpha_{j}(\pi_n^A, M_{n-1}) = \sum y^i_j \otimes_f f^i_j$. The z^j_j are chosen similarly to give a k-basis for $\text{im} \varphi^A_n \subseteq H^A_n$, and (\mathcal{F}^n_j, f^n_j) is also a k-linearly independent set as the \mathcal{F}^n_j are contained in an orthogonal complement of (\mathcal{F}^n_j) by construction. Finally, if $\sum \alpha_i f^i_j + \sum \beta_j \mathcal{F}^n_j \subseteq m^{n-1} \subseteq T^1$ for all $n \geq 2$. Let

$$\varphi^A(y_i) = f_i = \sum_{n \geq 2} f^n_i \text{ and } \alpha_{j}(z_j) = g_j = \sum_{n \geq 2} g^n_j;$$

they give well defined elements in T^1, put $H = T^1/(f_i) + (g_j)$ and $M = \{M_n\}$, then $H \cong \lim H_n$.

For the general case, choose a sequence of finite-dimensional k-vector spaces $V_1 \subset V_2 \subset \ldots \subset H^1$ with $\bigcup V_2 = H^1$. This gives a topology on H^1 as described before Definition 5 and hence on $H^{1*} = \lim V^*_s$ and on $T^1 = \lim_s T^1$, where T^1 has V^*_s as relative Zariski tangent space. For each s the construction above beginning with the extension

$$s_{M_1} : \quad 0 \to M \otimes_k V^*_s \to \to_s M \otimes_{t_{s+1}} M \to 0$$

is applied to produce a pair (φ^A, φ^O), $\varphi^A : T^1_A \to sT^1$, $\varphi^O : T^1_O \to sT^1$ and $\{s_{M_1}\}$. By induction on s and n we will show that there is a choice of $(s_{+1}^0 A, s_{+1}^0 O)$ which lifts $(s_{+1}^0 A, s_{+1}^0 O)$ over $s_{+1} T^1 \to T^1$. By naturality of the obstruction class, $\alpha_{s_{+1} T^1 A, s_{+1} T^1 O} = \sum y^i_s \otimes s_{+1} T^1 f^i_j \in H^1_s \otimes_k (s_{+1} A)$ maps to $\alpha_{s_{+1} T^1 A, s_{+1} T^1 O} = \sum y^i_s \otimes s_{+1} T^1 f^i_j \in H^1_s \otimes_k (s_{+1} A)$ under the map $s_{+1} G^A_s \to s_{+1} A$. A k-linear section σ, $V^*_s \to \to_{s_{+1}} V^*_s$, induces a filtration preserving section $s_{+1} T^1 \to \to_{s_{+1}} T^1$. A set of elements in $m^{n-2} \subseteq sT^1$ inducing a k-basis for $m^{n-2} \subseteq sG^A_s$ can be viewed as
elements in \(m^{n-2}n \subseteq s+1T^1 \) via the section and they can be supplemented to a set which induces a \(k \)-basis for \(m^{n-2}n \subseteq s+1G_n^A \). This set enables us to choose liftings \(s+1j_i^{(n)} \) of \(s+1f_i^{(n)} \) under \(s+1T^1 \mapsto T^1 \). Similar arguing ensures the existence of \(s+1g_j^{(n)} \in s+1T^1 \) mapping to both \(s+1j_i^{(n)} \) and to \(s+1g_j^{(n)} \). If new obstruction elements \(y_i^s \) and \(z_j^s \) are necessary, then they should be chosen to give \(k \)-bases for \(\text{im}(s+1\varphi_i^A) \subseteq H^2_\Lambda \) and for \(\text{im}(s+1\varphi_j^A) \subseteq H^2_\Lambda \) as above.

We want to find a deformation \(s+1M_n \) to \(s+1H_n \) lifting both \(s+1M_{n-1} \) and \(sM_n \). Choose any lifting \(s+1M'_n \) of \(s+1M_{n-1} \). Let \(\psi : s+1H_n \rightarrow sH_n \) be the natural map, then, essentially by Theorem \(\text{(iv) and induction, there is a commutative one. In the non-commutative case as the hull of the deformation functor of a module. In fact the following argument of Definition 1 except that } M \rightarrow k \text{ is the unique simple } k \text{-module (i.e. } k \text{ is the unique simple } R \text{-module). } A \text{ and } B \text{ may also be non-commutative } O \text{-algebras. A deformation of a left } A \text{-module, or equivalent, a left } A \text{-module and a right } R \text{-module, or equivalent, a left } A \otimes_R R^c \text{-module. Furthermore, } \hat{\text{Free}}_O(V^*) \text{ is the free non-commutative } O \text{-algebra, completed in the topology defined by ideals } I_{ijl_0} \text{ analogous to the ones in the beginning of this section, e.g. where the "power ideal" } (x_1, x_2, \ldots)^j \text{ is replaced by the (two-sided) ideal generated by } j \text{-tensors, and so on.}

Fix a maximal ideal \(m \) in an \(O \)-algebra \(B \) such that \(B/m \cong k \) and assume \(B/(m^2+mc_B) \) is countably dimensional. Let \(B \) be the completion of \(B \) in any topology as given in the beginning of this section (or analogous in the non-commutative case). Then \(\text{Hom}^{\text{cont}}_{O \otimes j/k}(B, -) \cong \text{Def}^B_k \), where \(\varphi \in \text{Hom}^{\text{cont}}_{O \otimes j/k}(B, R) \) is mapped to the \(B \otimes_R R^c \)-module \(R \) with module structure given by \((\varphi) \text{ multiplication of } B \otimes_R R^c \text{ through the composition } \).
$B \otimes \mathcal{O} R^c \xrightarrow{\varphi \otimes \text{id}} R \otimes \mathcal{O} R^c \xrightarrow{\text{mult.}} R^c$. It gives a deformation of k to R. For the inverse, any deformation M_R of k to R has $M_R \cong R$ as R-modules since M_R is R-flat, i.e. R-free of rank 1. Hence R has a (left) $B \otimes \mathcal{O} R^c$-module structure. Define $\varphi : B \to R$ by $\varphi(b) := (b \otimes 1) \cdot 1_R = r \in R$ for $b \in B$. Then $\varphi(bb') = (b' \otimes 1) \cdot 1_R = (b' \otimes 1) \cdot r = (b' \otimes 1)(1 \otimes r) \cdot 1_R = (1 \otimes r)(b' \otimes 1) \cdot 1_R = 1 \otimes r \cdot r' = r' r = (b' \otimes 1)(b \otimes 1) \cdot 1_R = \varphi(b', \varphi(b))$, $\varphi(1) = 1_R$ and φ is additive. If $f : \mathcal{O} \to B$ and $g : \mathcal{O} \to R$ define the \mathcal{O}-algebra structures, then $\varphi(f(\lambda) a) = (f(\lambda) a \otimes 1) \cdot 1_R = a \otimes g(\lambda) \cdot 1_R = (1 \otimes g(\lambda))(a \otimes 1) \cdot 1_R = g(\lambda)(a \otimes 1) \cdot 1_R = g(\lambda) \varphi(a)$, hence φ gives a well-defined \mathcal{O}-algebra homomorphism $B \to R$ above k and B pro-represents Def_k^B.

In particular

$$\hat{B} \cong (T^1 \otimes T^2_2 \mathcal{O}) \otimes T^0_2 \mathcal{O}$$

for obstruction maps o^A and o^\prime. For instance, if $B = \mathcal{O}$, then $\overline{B} = k$ and $\text{Def}^B_k(R)$ is a one-element set for all R and Def^B_k is pro-represented by \mathcal{O}.

Remark that if B is non-commutative, we can still deform k over commutative Artinian \mathcal{O}-algebras, but then the completion \hat{B} will be in the ideals $T_{ijl} + [B, B]$ and hence in that case be a commutative \mathcal{O}-algebra, indeed $\hat{B} = (B/\pi[B, B])$.

In [8] we axiomatically define a functor with n obstructions and corresponding obstruction maps and prove the existence of such maps in the countably-dimensional case. Theorem [2] is an instance of this. A single obstruction map defined for the obstruction o^2 has been constructed by O. A. Laudal in [15].

We next state a theorem describing how closely related the obstruction map o^A, defined by \hat{B}-cohomology, is to o^A and o^\prime, defined by $\overline{\mathcal{A}}$-cohomology. Let T^B_2 be a local complete \mathcal{O}-algebra with relative Zariski tangent space $\text{Ext}^2_\mathcal{O}(M, M)$ for any topology as in Theorem [2]. In the next sections (Proposition [2] and Lemma [4]) we show that there is a canonical isomorphism $\ker \partial_T \cong \text{Ext}^2_\mathcal{O}(M, M)$ and a natural exact sequence of \mathcal{O}-modules $0 \to \text{coker} \partial_T \to \text{Ext}^2_\mathcal{O}(M, M) \to \text{Ext}^2_\mathcal{O}(M, M)$. Hence there is a “short exact sequence” of continuous maps $T^A_2 \to T^B_2 \to T^0_2$. Our main comparison result reads:

Theorem 3. With assumptions as in Theorem [2] given a pair of obstruction maps $o^A : T^A_2 \to T^1_1$ and $o^\prime : T^J_2 \to T^1_1$ for the obstructions o^A and o^\prime, defining the hull of $\text{Def}^{(A, J)}_M$, there exists an obstruction map $o^B : T^B_2 \to T^1_1$ for the obstruction o^B, defining the hull of Def^B_M, such that

$$o^B_{T^A_2} = o^A, \quad \text{and} \quad o^B \otimes \mathcal{O} = o^\prime \otimes \mathcal{O} \quad \text{as maps} \quad T^B_2 \to T^1_1 \otimes \mathcal{O}.$$\[8\]

Conversely, given an obstruction map o^B, there exists a pair of obstruction maps o^A and o^\prime such that the following diagram of continuous maps is commutative:

$$\begin{array}{ccc}
T^2_2 & \xrightarrow{o^A} & T^2_2 \xrightarrow{o^\prime} T^2_2 \\
\downarrow & & \downarrow \\
T^1_1 & \xrightarrow{o^B} & T^1_1
\end{array}$$

Remark 8. The o^B-map is in general not the “union” of o^A and o^\prime, but there is always a pair of obstruction maps (o^A, o^\prime) such that o^B can be taken as the “union” of o^A and o^\prime.
We do not necessarily get a trivial $o^{i_{1}+i_{2}}$ even if $o^{i_{1}}$ is trivial for $i = 1, 2$. The reason for this is simply that the natural map $\partial i_{1}+i_{2} \to \partial i_{1}$ does not have to be injective. An explicit example is given in [5, Ex. 4.1.4].

Remark 9. To distinguish it from o^{A} in the pair of obstruction maps (o^{A}, o') for $\text{Def}^{(A,J)} M$, let o^{A}_{i} (in this remark) be an obstruction map

$$o^{A}_{i} : \text{Free}_{O}(\text{Ext}_{M}^{j}(M,M)^{*}) \to \text{Free}_{O}(\text{Ext}_{A}^{j}(M,M)^{*})$$

for $\text{Def}^{(A,J)} M$. If o^{A}_{i} composed with the natural map $\text{Free}_{O}(\text{Ext}_{A}^{j}(M,M)^{*}) \to T^{1}$ is trivial, one can choose (o^{A}, o') for $\text{Def}^{(A,J)} M$ such that o^{A} is trivial. However, even if o^{A} in (o^{A}, o') is trivial, o^{A}_{i} continued to T^{1} may be far from trivial as Example 8 shows. There is no way one can find o^{A} “first” and then find o', as this has no meaning. It is not clear to the author whether o^{A} in the pair (o^{A}, o') and the locus it defines has any interesting interpretation.

Proof. Suppose (o^{A}, o') is given, and assume first that $\text{dim}_{k} H^{1} < \infty$. By Proposition 2 and Lemma 3 we have a “short exact sequence” $T^{1}_{A} \hookrightarrow T^{2}_{A} \to T^{2}_{J}$; the last map has a section and if $T^{2}_{J} = \mathcal{O}[y_{1}, y_{2}, \ldots]$, $T^{2}_{J} = \mathcal{O}[z_{1}, z_{2}, \ldots]$, we let the union $\{y_{i}\} \cup \{z_{j}\}$ also denote the “generators” in T^{2}_{J}. We want to define o^{A}. While we let $o^{A}(y_{i}) := o^{A}(y_{i}) = f_{i} \in T^{1}$ which is OK by Lemma 3, we find $o^{A}(z_{j}) = h_{j} \in T^{1}$ by induction. We use notation as in the proof of Theorem 2, except that f_{i}^{n}, g_{j}^{n} and h_{n}^{n} are the images of f_{i}, g_{j} and h_{j} in T^{1}. By Theorem 3 $o_{n}(\pi_{A}^{n}, M_{n-1}) = \sum y^{A}\otimes T^{A}_{j} + \sum \pi^{A}_{i} \otimes T^{A}_{j}$ maps to $o_{n}(\pi_{A}^{n}, M_{n-1}) = \sum z^{A}_{j} \otimes T^{A}_{j}$ in $H^{2}_{A} \otimes k I^{A}_{j}$ along $I^{A}_{n} \to T^{A}_{n}$. Since $\ker(I^{A}_{n} \to T^{A}_{n}) = (T^{A}_{n})$ we get $\pi^{A}_{j} = g_{j}^{n} + \sum a_{n}^{A}_{i}T^{A}_{i}$ with $a_{n}^{A} \in k$. By naturality of the obstruction classes, $\pi^{A}_{j} = g_{j}^{n} + \sum a_{n}^{A}T^{A}_{i}$ maps to $\pi^{A}_{j} = g_{j}^{n} + \sum a_{n}^{A}T^{A}_{i}$ under the natural map $G_{n}^{A} \to G_{n-1}^{A}$. We may assume that the T^{A}_{i} in the latter sum are k-linearly independent. By induction we have chosen $a_{n}^{A}_{i} \in \mathcal{O}/m^{n-1}$ lifting a_{n}^{A} and defined $o^{A}_{n+1}(z_{j}) = h_{j}^{-1} = g_{j}^{n} + \sum a_{n}^{A}_{i}T^{A}_{i}$ in T^{A}_{n-1}. Choose liftings $a_{n}^{A}_{j} \in \mathcal{O}/m^{n-1}$ of T^{A}_{j} and of the “new” coefficients π_{j}, i.e. if $a_{n}^{A}_{j} = 0$ (but only such that the T^{A}_{i} in the sum $\pi_{j} = g_{j}^{n} + \sum a_{n}^{A}T^{A}_{i}$ are linearly independent). Put $o^{A}_{n}(z_{j}) = h_{j}^{n} = g_{j}^{n} + \sum a_{n}^{A}_{i}T^{A}_{i}$ in T^{A}_{n}. In the limit we get $o^{A}(z_{j}) = h_{j} = g_{j} + \sum a_{i}f_{i}$, where $a_{i} := \lim(a_{n}^{A}_{i}) \in \mathcal{O} \subseteq T^{1}$. This is stronger than our claim.

For the general case, choose a sequence of finite-dimensional k-vector spaces $V_{1} \subset V_{2} \subset \cdots \subset H^{1}$ with $\bigcup V_{n} = H^{1}$ as in the proof of Theorem 2. If $o^{A}_{n+1}(\pi_{A}^{n}, M_{n-1}) = \sum y^{A}\otimes T^{A}_{i} + \sum z^{A}_{j} \otimes T^{A}_{j}$, then $s+1h^{n}_{j} = s+1g_{j}^{n} + \sum \pi_{j}T^{(s+1)n}_{i}$, and if $s+1T^{(s+1)n}_{i} = 0$, choose liftings $a_{n}^{A}_{i} \in \mathcal{O}/m^{n}$ of $a_{n}^{A}_{i}$ and put $s+1h^{n}_{j} = s+1g_{j}^{n} + \sum a_{n}^{A}_{i}(s+1)_{i}$; the other a_{n}^{A} are already chosen by induction on s. Put $o^{A}(z_{j}) = \lim(a_{n}^{A}(z_{j}))$. It is well defined.

Given o^{A}, let $o^{A}(y_{i}) := o^{A}(y_{i})$ and let $o^{A}(z_{j}) := o^{A}(z_{j})$. Then (o^{A}, o') are obstruction maps for the two obstructions o_{i} and o_{j}. This follows from Theorem 2 and Lemma 3.

\[\square \]

4. The change of rings spectral sequence

The spectral sequence connects the A- and the B-cohomology and also provides a framework for describing relations between the various obstruction classes. In the
following we give detailed descriptions of the maps α, d_2 and γ by representations in the Yoneda complex.

Lemma 2. Let $A \to B$ be a ring homomorphism and let N, M be an A- and a B-module, respectively. Then there is a first quadrant cohomological spectral sequence

$$E_2^{pq} = \text{Ext}_B^p(M, \text{Ext}_A^q(B, N)) \Rightarrow \text{Ext}_A^*(M, N).$$

In particular there is a canonical 5-term exact sequence which, in the case $B = A/J$ and N is a B-module as A-module, becomes

$$
0 \longrightarrow \text{Ext}_B^1(M, N) \longrightarrow \text{Ext}_A^1(M, N) \overset{\alpha}{\longrightarrow} \text{Hom}_A(J, \text{Hom}_A(M, N))
$$

$$d_2: \text{Ext}_B^2(M, N) \overset{\gamma}{\longrightarrow} \text{Ext}_A^2(M, N)
$$

(9)

Proof. Let $G = G \to M$ be a B-projective resolution of M and let $N \hookrightarrow I' = I$ be an A-injective resolution of N. Then the II-filtration of $\text{Hom}_B(G, \text{Hom}_A(B, I))$ gives a spectral sequence which collapses at stage 2 to the total cohomology. The spectral sequence obtained from the I-filtration gives the E_2-terms. The 5-term exact sequence is the standard one with $E_2^{01} \cong \text{Hom}_A(J, \text{Hom}_A(M, N))$. □

Let $\varepsilon : (F, d) \to M$ be an A-free resolution of M, and let $E \to B$ be an A-free resolution of $B: \ldots \to E_2 \to E_1 \to A \to B$. Recall the definition of $m : E \otimes_A F \to F$ before Proposition 1. We change the notation by $s := m_{\geq 1} : E_{\geq 1} \otimes F \to F$, where $E_{\geq 1} = [\ldots \to E_2 \to E_1][+1]$, and let $m_{E_1} : E_1 \otimes F \to F$ be the multiplication with $J = (f_1, \ldots, f_r)$ on F-map pulled back along $E_1 \to J$. Then $\partial(s)$ equals m_{E_1} when restricted to $E_1 \otimes F$ and is zero elsewhere. Hence the map ∂_J is described simply as induced by the pullback along $s : E_1 \otimes F_0 \to F_1$, (the m_1 in (1)).

Proposition 2. If M and N are B-modules as A-modules, then

$$\partial_J : \text{Ext}_A^1(M, N) \longrightarrow \text{Hom}_A(J, \text{Hom}_A(M, N))$$

given in Definition 2 is the edge map α in the change of rings spectral sequence in Lemma 2. In particular there are canonical isomorphisms

$$\ker \partial_J \cong \text{Ext}_B^1(M, N) \quad \text{and} \quad \text{coker} \partial_J \cong \text{im} d_2 \subseteq \text{Ext}_B^2(M, N),$$

where d_2 is the spectral sequence differential in Lemma 2.

Proof. Let $\xi \in \text{Hom}_A(F_1, N)$ be a cocycle representing the class $[\xi] \in \text{Ext}_A^1(M, N)$. Then there is a $\rho \in \text{Hom}_A(F_0, I^0)$ extending $\iota \xi$, where $\iota : M \hookrightarrow I^0$ is the coaugmentation map. There is also a $\tau \in \text{Hom}_A(M, I^1)$ extending $d^0 \rho$, clearly $[\tau] = [\xi]$. From $\rho d_1 = \iota \xi$ we get $\rho m_{E_1} = \iota \xi s$. The map $\iota \xi s$ represents $\partial_J([\xi])$. If $\tau = \varepsilon \otimes_A B$ one is left to prove that the connecting $\text{Hom}_B(M, \text{Ext}_A^*(B, M)) \cong \text{Hom}_A(J \otimes_A M, N) \cong \text{Hom}_A(J, \text{Hom}_A(M, N))$ is represented by taking $\tau \in \text{Hom}_A(M, \text{Hom}_A(I, N))$ to the short exact sequence $0 \to J \to A \to B \to 0$ gives an exact sequence of complexes. Observe $\text{Hom}_A(F_0, \text{Hom}_A(B, I)) \cong \text{Hom}_A(F_0, \text{Hom}_A(J, I)) \cong \text{Hom}_A(F_0, I)$ and

$$\text{Hom}_A(F_0, \text{Hom}_A(J, I)) \cong \text{Hom}_A(J \otimes F_0, I) \leftarrow \text{Hom}_A(E_1 \otimes F_0, I).$$
Hence
\[
\begin{array}{c}
\text{Hom}_A(E_1 \otimes F_0, I^1) \xrightarrow{\rho m_{E_1}} \text{Hom}_A(F_0, I^1) \xrightarrow{\rho \tau} \text{Hom}_A(F_0, I^1) \xrightarrow{\rho \tau} 0 \\
\text{Hom}_A(E_1 \otimes F_0, I^0) \xrightarrow{\rho m_{E_1}} \text{Hom}_A(F_0, I^0) \xrightarrow{\rho} \text{Hom}_A(F_0, I^0) \xrightarrow{\rho} 0 \\
\text{Hom}_A(E_1 \otimes F_0, N) \xrightarrow{\xi} 0
\end{array}
\]

\[
\square
\]

Remark 10. If \(A \) is an \(\mathcal{O} \)-algebra for any commutative ring \(\mathcal{O} \), there is a restriction of derivations map
\[
D \in \text{Der}_\mathcal{O}(A, \text{Hom}_\mathcal{O}(M, N)) \longrightarrow \text{Hom}_A(J, \text{Hom}_\mathcal{O}(M, N)) \ni D|_J
\]

which one checks is well defined if \(M \) and \(N \) are annihilated by \(J \). The inner derivations map to zero and if \(A \) is \(\mathcal{O} \)-flat we have
\[
\text{Der}_\mathcal{O}(A, W)/(\text{inner derivations}) \cong \text{HH}^1(A; W) \cong \text{Ext}^1_A(M, N),
\]

where \(\text{HH}^* (A; W) \) is the Hochschild cohomology with values in the \(A \)-bimodule \(W = \text{Hom}_\mathcal{O}(M, N) \). Via this identification our \(\partial_J \) equals the restriction of derivations map. This is proved by constructing a specific lifting of the multiplication of \(J \)-map on a non-reduced bar complex. Indeed let \(s : E_1 \otimes_A A \otimes \mathcal{O} M \rightarrow A \otimes \mathcal{O} A \otimes \mathcal{O} M \) be defined by \(s(e_i \otimes 1 \otimes m) = 1 \otimes f_i \otimes m \), where \(J = (f_1, \ldots, f_r) \) and \(E_1 = \bigoplus_{i=1}^{r} A e_i \).

Then \(\partial_J = s^* \). We are indebted to Prof. O. A. Laudal for suggesting this interpretation of \(\partial_J \) at an early stage, which again led to the above change of rings spectral sequence.

Example 5. Let \(P \) be a regular local complete Noetherian \(k \)-algebra, and let \(J_A \) and \(J_B \) be ideals in \(P \) with \(0 \neq J_A \subseteq mJ_B \) and \(J_B \subseteq m^2 \). Let \(A = P/J_A \), \(B = P/J_B \), \(\mathcal{O} = k \) and \(M = k \) which is assumed to be the residue field of \(B \). Then \(\text{Def}_\mathcal{O}^X \) is pro-represented by \(X \) for \(X = P, A \) and \(B \); see Example 4. In particular the ideal \(J_A \) is given by the image of the maximal ideal under the obstruction map \(o^A \). However, if \(\mathcal{J} := J_B \cdot A \subseteq A \), then \(o^A \) in the pair of obstruction maps \((o^A, o^\mathcal{J}) \) is trivial. The reason for this can be seen from the obstruction calculus. Since \(o^\mathcal{J} \) can potentially generate \(J_B \) as obstruction ideal and \(o^A \) only generates \(J_A \subseteq mJ_B \), the \(o_A \)-obstruction will be one or more “steps” behind \(o^\mathcal{J} \), the latter thus takes care of all the obstruction. This phenomenon can also be deduced from the 5-term exact sequence. For transparency assume \(J_A \) and \(J_B \) are generated by regular sequences of length \(a \) and \(b \). \(A \) and \(B \)-free minimal resolutions of \(k \) may be produced from the \(P \)-free Koszul resolution of \(k \) beginning with the 3-presentation in Lemma 3 below (with \(E_2 = 0 \)). Then the 5-term exact sequence is
\[
0 \longrightarrow m_B/m_B^* \xrightarrow{\sim} m_A/m_A^* \xrightarrow{0} (\mathcal{J} \otimes k)^* \xrightarrow{d_2} k^b \oplus k^{(b)} \longrightarrow k^a \oplus k^{(a)}
\]

where \(n = \text{dim}_{Krat} P \). The spectral sequence differential \(d_2 \) is injective, and gives the isomorphism \((\mathcal{J} \otimes k)^* \cong k^b \). This in fact also proves that \(o_A \) is confined to \(k^b \) and thus maps to zero in \(\text{Ext}^2_A(k, k) \). Hence \(o^A \) in the pair \((o^A, o^\mathcal{J}) \) has to be trivial; see Lemma 3. The \(o_A \) for \(\text{Def}_\mathcal{O}^X \) is for the same reason confined to \(k^a \), but far from trivial. Remark that this is not in contradiction to Lemma 3. If, by changing the assumptions, some elements in \(J_A \) are non-zero in \(J_B/mJ_B \), they will produce
identifications between corresponding subspaces of k^b and k^a and hence some of o^A will be induced from o^A in (o^A, o^B). In fact the isomorphism of the “Koszul-part” of the Ext’s may be explained similarly if we for a moment consider the non-commutative deformation functors, i.e. where the local Artinian rings are allowed to be non-commutative. Then Def$_k^1$ is in fact still pro-represented by the commutative ring B; see Example 11. The $(^n)$-part takes care of the commutators, which are given as cup products, and hence appear simultaneously in the obstruction calculus for both deformation functors.

Assume $d_2 : E_2 \to E_1$ is given as the Koszul differential d_K plus a map $d'_E : E'_2 \to E_1 \cong A'$ and let s' be the restriction of $s : E_2 \otimes F_0 \to E'_2 \otimes F_0$.

Lemma 3. The following maps of A-free modules give a B-free 3-presentation of M after tensoring with B:

\[
\begin{array}{ccc}
F_0 & \xleftarrow{d} & F_1 \\
\oplus & (s,d) & \oplus \\
& F_2 & \oplus \\
\end{array}
\]

\[
\begin{pmatrix}
E_1 \otimes F_0 & 1 \otimes d & 0 \\
E'_2 \otimes F_0 & s' & d \\
E_1 \otimes F_1 & s & 0 \\
F_3 & & \\
\end{pmatrix}
\]

Remark 11. The above assumption about $d_2 : E_2 \to E_1$ is no limitation; we can always produce such resolutions of B. The point is that if $J = (f_1, \ldots, f_r)$ is a regular sequence, then $H_1(K(f_1, \ldots, f_r)) = 0$ where K is the Koszul complex, $E'_2 = 0$ and our 3-presentation is the beginning of a construction of Eisenbud which gives a B-free resolution from an A-free one; see [4, Theorem 7.1]. In general this resolution is not minimal. Using E_2 instead of E'_2, it is not hard to prove the result by moving elements around.

Proof. Since the 3-presentation (with E_2 instead of E'_2) is the beginning of the mapping cone $K(s)$ of $B \otimes s : B \otimes E_{2+1} \to B \otimes F[+1]$ shifted minus one, and the composition $E_{2+1} \otimes F \to B \otimes E_{2+1} \otimes F \to B \otimes F[+1]$ is a quasi-isomorphism inducing the inverse connecting $\text{Tor}_s^A(B, M)$ to $\text{Tor}_s^{A+1}(B, M)$, the map $H_1(B \otimes s)$ is surjective. Thus $H_i(K(s)) = 0$ for $i = 0, 1$ and hence our complex is exact in degree 1 and 2. □

Let $(id[2], 0)$ be the obvious map $F_0 \otimes E_1[-1] \oplus F_2 \to F_0 \otimes E_1[1]$ tensored down to B. The map induces a 2-cocycle in a B-free Yoneda complex which calculates $\text{Ext}^2_B(M, M \otimes_B J/J^2)$, where the resolution of M begins as in Lemma 5 and the resolution of $M \otimes_B J/J^2$ begins with $B \otimes_A (F_0 \otimes E_1)$. In fact this cocycle represents $o := o(A/J^2) \in \text{Ext}^2_B(M, M \otimes_B J/J^2)$ which is the obstruction for lifting M to A/J^2 as in Definition 1. This element induces via the Yoneda cup product $\text{Hom}_B(M \otimes_B J/J^2, N) \times \text{Ext}^2_B(M, M \otimes_B J/J^2) \xrightarrow{\cup} \text{Ext}^2_B(M, N)$ a map

\[
\text{Ext}^2_B(M, N) \xrightarrow{o} \text{Ext}^2_B(M, N).
\]

Via the natural isomorphism $\text{Hom}_B(M \otimes_B J/J^2, N) \xrightarrow{\cong} \text{Hom}_B(M, \text{Ext}^1_B(A, B, N))$ we have:

Proposition 3. Assume both M and N are $B = A/J$-modules as A-modules. Then the differential in the change of rings spectral sequence of Lemma 5

\[
d_2 : \text{Hom}_B(M, \text{Ext}^1_A(B, N)) \to \text{Ext}^2_B(M, N)
\]
is induced by cupping with the obstruction \(o(A/J^2) \in \text{Ext}^2_B(M, M \otimes_B J/J^2) \) as in (10) and \(o(A/J^2) \) is induced by the cocycle \((\text{id}[2], 0)\) in the Yoneda complex of \(B \)-free resolutions. In particular the obstruction is canonically given as
\[
o(A/J^2) = d_2(\text{id}_{M \otimes_B J/J^2}).
\]

Remark 12. This result is only marginally different from L. Illusie’s Propositions 3.1.5 and 3.1.13 combined [10 Chap. IV], in the case of rings (Illusie works with rings over a topos). In his formulation \(J^2 = 0 \) (but \(\text{Ext}^1_A(M, N) \cong \text{Ext}^1_{A/J^2}(M, N) \)), and his spectral sequence is \(\text{Ext}^p_B(\text{Tor}_q^{A/J^2}(M, B), N) \Rightarrow \text{Ext}^p_A(M, N) \). Illusie’s proof depends on the cotangent complex of graded algebras and gives representations in the derived category. We are interested in explicit calculations of the generalised Massey products and the formally versal formal family, and our proof, which gives simple representations of the map and the class in the Yoneda complex, is therefore better suited to our needs.

Remark 13. If \(J \) defines a locally complete intersection, i.e. \(J/J^2 \) is \(B \)-projective of finite rank, it is not hard to extend the result to all the \(d_2 \)-differentials. We have
\[
\text{Ext}^p_B(\text{Ext}^q_B(B, N)) \cong \text{Ext}^q_B(M, N) \otimes \bigwedge J/J^2^*\]
and \(\psi \in \text{End}_B(J/J^2) \) acts on \(f_1 \ldots f_q \in \bigwedge J/J^2^* \) by \(\psi \cdot f_1 \ldots f_q = \sum f_1 \ldots \psi(f_i) \ldots f_q \) while \(J/J^2 \) acts as graded derivations. Combining this with the cup product, any \(\xi \in \text{Ext}^p_B(M, \text{Ext}^q_A(B, N)) \) defines a natural, vertical map by “multiplication” in the diagram:
\[
\begin{array}{ccc}
0 & \xrightarrow{d_2} & \text{Ext}^2_B(M, M \otimes_B J/J^2) \\
\xi \downarrow & & \xi \downarrow \\
\text{Ext}^p_B(M, N) \otimes_B \bigwedge J/J^2^* & \xrightarrow{d_2} & \text{Ext}^{p+2}_B(M, N) \otimes_B \bigwedge J/J^2^* \\
\end{array}
\]
The diagram commutes since \(d_2 \) is natural for natural products on the cohomology and hence if \(o(A/J^2) = \sum o \otimes x_i \) and \(\xi = \bigwedge \otimes f \), then \(d_2(\xi) = \sum (\xi \otimes o) \otimes f \cdot x_i \).

Proof of Proposition 3. The pullback of endomorphisms by \((\text{id}[2], 0)\) induces a map
\[
\text{End}_B(M \otimes_B J/J^2) \longrightarrow \text{Ext}^2_B(M, M \otimes_B J/J^2)
\]
which possibly depends on the resolution chosen, etc. We show that the image of the identity is the obstruction \(o(A/J^2) \) which follows since \(o(A/J^2) \) by construction (see the proof of Theorem 1) is induced from the square of a lifting to \(A/J^2 \) of the \(B \)-differential \(d_B \) in a \(B \)-free resolution \((F^B, d^B)\) of \(M \): Recall the notation before Proposition 2. By Lemma 3 \(d_B \) may be chosen with \(d^B = d_1 \otimes_A B, d^B = (s, d_2) \otimes_A B \) hence \(d^B \circ d^B = d_1 \circ (s, d_2) \otimes A/J^2 = (m_{E_1}, 0) \otimes_A A/J^2 \) which lifts to \((\text{id}[2], 0)\) via \(m_{E_1} : F_0 \otimes E_1 \to F_0 \). Since we have such a nice representation of \(o(A/J^2) \) in the Yoneda complex, the idea of the proof is to take a class \([\xi] \in \Hom_B(M, \text{Ext}^q_A(B, N)) \cong \Hom_B(M \otimes_B J/J^2, N) \) represented by a cocycle \(\xi = (\xi_i) \) in the Yoneda complex: \(\xi_0 \in \Hom_B(F_0 \otimes E_1, F_0) \), where \((F', d')\) is an \(A \)-free resolution of \(N \) and \(F' = F \otimes_A B \), etc. Move it to a representative for the same class in \(E^{01} = \Hom_B(F_0^B, \Hom_A(B, I^1)) \), where \(F_0^B = T_0 \) and \(N \hookrightarrow I \) is an \(A \)-injective resolution of \(N \), and calculate \(d_2 \) by moving this new representative along the “stairs” in the double complex \(\Hom_B(F^B, \Hom_A(B, I)) \) to a representative for the
image $d_2([\xi])$ in $E^{20} = \text{Hom}_B(F^2_B, \text{Hom}_A(B, F^0))$ (where $F^2_B = F_0[2] \otimes E_1 \otimes F_2$). Finally we move back to a representative for $d_2([\xi])$ in the Yoneda complex and observe that we may take it to be $(\xi_0[2], 0) \in \text{Hom}_B(F_0[2] \otimes E_1 \otimes F_2, F_0)$. Since $\xi_0 \circ (\text{id}[2], 0) = (\xi_0[2], 0)$, we get $d_2([\xi]) = [\xi] \cup o(A/j^0)$. Hence the map $\{1\}$ induced by the particular form of the (possibly non-minimal) 3-presentation is indeed canonical and equal to d_2. This is only almost what we do, actually we lift the B-representative ξ_0 from $\text{Hom}_B(F_0, \text{Hom}_B(E_1, F_0))$ to an A-representative in $\text{Hom}_A(F_0, \text{Hom}_A(E_1, F_0))$ and then do the zigzagging with A-representatives. Details are given in [8].

5. The Formula $o(J) \cup o(A/j^2) = o_B$

Several of our obstruction classes are connected by the d_2-differential in the following theorem.

Theorem 4. With assumptions as in Theorem [1], we assume furthermore that there exists an A_R-module M_R lifting M along $\pi_{A_R} = \text{id}_A \otimes \pi$ in the diagram

$$
\begin{array}{ccc}
A_R & \longrightarrow & B_R \\
\downarrow \pi_{A_R} & & \downarrow \pi_{B_R} \\
A_S & \longrightarrow & B_S
\end{array}
$$

in the sense of Definition [4], in particular $o_{A_S}(\pi_{A_R}, M) = 0$. If $o_{J_S} = o_{J_S}(\pi_{A_R}, M)$ is the obstruction for lifting M to B_R, then, via the natural inclusion $o_{J_S} \in \text{coker} \partial_{J_S} \hookrightarrow \text{Ext}^2_{B_S}(M, M \otimes \mathcal{S} I)$, it satisfies

$$
o_{J_S} = d_2(o(J_S)) = o(J_S) \cup o(A_S/j^2_S) = o_{B_S},$$

where \cup is the cup product and $o(J_S) \in \text{Hom}_{B_S}(M \otimes B_S J_S/J^2_S, M \otimes \mathcal{S} I)$ is the obstruction for M_R to be an A_R-module as A_R-module,

$$o(A_S/j^2_S) \in \text{Ext}^2_{B_S}(M, M \otimes B_S J_S/J^2_S)$$

is the obstruction for lifting M to A_S/J^2_S, $o_{B_S} \in \text{Ext}^2_{B_S}(M, M \otimes \mathcal{S} I)$ is the obstruction for lifting M to B_R and

$$d_2 : \text{Hom}_{B_S}(M \otimes B_S J_S/J^2_S, M \otimes \mathcal{S} I) \rightarrow \text{Ext}^2_{B_S}(M, M \otimes \mathcal{S} I)$$

is the 2nd differential in the change of rings spectral sequence in Lemma [2].

Proof. Let (F, d) be an A_S-free resolution of M. Then o_{A_S} is induced by $\tilde{d}_1 \circ \tilde{d}_2$, where (\tilde{F}, \tilde{d}) is a lifting of d to maps of A_R-free modules as explained in the proof of Theorem [1]. We choose an A_S-free $E_1 \rightarrow J_S$ and maps \tilde{s} as in Lemma [3] to produce a B_S-free 3-presentation $F^{B_S} = F^{B_S}(s)$ of M. We observe the bottom row as $B_S \otimes \delta$ and that the edge map $\text{Ext}^2_{B_S}(M, -) \rightarrow \text{Ext}^2_{A_S}(M, -)$ in the change of rings spectral sequence is induced by the map $F \rightarrow F^{B_S}(s)$, where F maps to $B_S \otimes F$; see Lemma [3]. The obstruction o_{B_S} is induced by $\tilde{d}_1^{B_S} \circ \tilde{d}_2^{B_S}$, where \tilde{d}^{B_S} lifts d^{B_S} to an B_R-free lifting of F^{B_S}, but $d_1^{B_S} = B_S \otimes \delta_1$ and $d_2^{B_S} = B_S \otimes (s, d_2)$, hence

$$\tilde{d}_1^{B_S} \circ \tilde{d}_2^{B_S} = B_S \otimes \delta_1 \circ (B_S \otimes s) \otimes (B_S \otimes d_2) = B_R \otimes A_R (\tilde{d}_1 \circ \tilde{s}, \tilde{d}_1 \circ \tilde{d}_2),$$

for liftings \tilde{d}, \tilde{s} of d and s to A_R-free modules. Clearly $\tilde{d}_1 \circ \tilde{d}_2$ induces the same element as $B_R \otimes A_R \tilde{d}_1 \otimes \tilde{d}_2$ in $\text{Ext}^2_{A_S}(M, M \otimes \mathcal{S} I)$, hence o_{B_S} maps to o_{A_S} by the edge map. We have assumed $o_{A_S} = 0$, indeed we have chosen an A_R-module M_R lifting
M which corresponds to a choice of liftings \tilde{d}_i, $i = 1, 2$ with $\tilde{d}_1 \circ \tilde{d}_2 = 0$, hence o_{B_S} is induced by $d_1^{BS} \circ d_2^{BS} = BR \otimes A_B(d_1 \circ \delta, 0)$ and d_1^{BS} induces the class $o(J_S)$ (see the proof of Theorem [1]). The only thing we lack is a description of the d_2-differential in terms of our construction. By Proposition 3, d_2 is cupping with the obstruction class $o(A_S/J^2_S) \in \text{Ext}^2_B(M, M \otimes B_S J^2_S/J^2_S)$ which is induced by the composition $d_1^{BS} \circ d_2^{BS}$ of liftings of the B_S-differential d_i^{BS} to maps of an A_S/J^2_S-free lifting of F^{B_S}. However we already have a lifting to A_S, hence we choose $d_1^{BS} = A_S/J^2_S \otimes d_1$ and $d_2^{BS} = A_S/J^2_S \otimes (s_0, d_2)$ and thus $o(A_S/J^2_S)$ is induced by $d_1^{BS} \circ d_2^{BS} = A_S/J^2_S \otimes (\delta, s_0, 0)$; the first coordinate corresponds to $\text{id}_{M \otimes J_S/J^2_S}$. Hence the class $o(J_S)$ maps to o_{B_S} under the spectral sequence differential d_2:

$$o(J_S) \in \text{Hom}_{B_S}(M \otimes B_S J_S/J^2_S, M \otimes S I) \xrightarrow{d_2} \text{Ext}^2_B(M, M \otimes S I) \ni o_{B_S} = (o(J_S), 0).$$

Finally o_{B_S} is the image of $o(J_S)$ by d_2 via the canonical isomorphism $\text{coker} \partial_J \cong \text{im} d_2$ in Proposition 2.

For the sake of completeness we note

Lemma 4. The edge map

$$\gamma : \text{Ext}^2_B(M, N) \longrightarrow \text{Ext}^2_A(M, N)$$

in the 5-term exact sequence 10 is induced by any comparison map $F^A \rightarrow F^B$ of an A- and a B-free resolution of M. With notation as in Theorem 4 the obstruction class o_{B_S} maps to the obstruction class o_{A_S} under the edge map

$$\text{Ext}^2_{B_S}(M, M \otimes S I) \longrightarrow \text{Ext}^2_{A_S}(M, M \otimes S I).$$

Proof. Let $N \hookrightarrow I$ be an A-injective resolution of N and consider the complex $\text{Hom}_{B}(F^B, \text{Hom}_A(B, I))$ which induces the spectral sequence in Lemma 2. The edge, which is

$$E^0_2 = H^0\text{Hom}_B(F^B, \text{Hom}_A(B, N)) \xrightarrow{i^*} H^0 = H^0\text{Hom}_B(F^B, \text{Hom}_A(B, I))$$

for $i : N \hookrightarrow I^0$, factorizes via

$$(12) \quad \text{Hom}_B(F^B, \text{Hom}_A(B, N)) \longrightarrow \text{Hom}_A(F^A, N) \xrightarrow{\sim} \text{Hom}_A(F^A, I)$$

$$\xleftarrow{\sim} \text{Hom}_A(M, I) \cong \text{Hom}_B(M, \text{Hom}_A(B, I)).$$

That o_{B_S} maps to o_{A_S} follows as in the proof of Theorem 4. \square

In the situation of Theorem 4 the map $\partial_J : \text{Ext}^1_{A_R}(M, M \otimes S I) \rightarrow \text{End}_{A_S}(M \otimes S I)$ is surjective by Proposition 3. Hence the following result gives a characterisation of the class $o(J_S)$.

Proposition 4. With assumptions as in Theorem 4

$$o(J_S) = -\partial_J(\xi)$$

for any extension $\xi \in \text{Ext}^1_{A_R}(M, M \otimes S I)$ with $\partial_J(\xi) = \text{id} \in \text{End}_{A_S}(M \otimes S I)$.

A proof in the deformation situation is given in [5]; it is easily extended.
6. Explicit examples of obstruction calculations

Finally we give some examples where we calculate the obstruction classes in Theorem 1 and the obstruction maps in Theorem 2. In the first example we already know the answer by the example General.

Example 6. Let $\mathbb{Z}_2 = \hat{\mathbb{Z}}(2)$ and $B := \mathbb{Z}_2[x]/J$, where $J = (f)$ and $f = 2 + x^2$. Let $M = \overline{B}/(x)$ be a $\overline{B} = B/(2)$-module. We calculate the obstruction polynomial of $\text{Def}_{\mathcal{H}}^B : \text{Art}_{\mathcal{H}} \rightarrow \text{Sets}$. Let $A := \mathbb{Z}_2[x]$, $\overline{A} = A/(2)$. Then $M \hookrightarrow \overline{A} \sub A$ is a length 1 \overline{A}-free resolution of M. We have $\text{Ext}^1_{\overline{A}}(M, M) \cong \text{Ext}^2_{\mathbb{Z}}(M, M) \cong \mathbb{F}_2$. Since $\text{Ext}^2_{\mathbb{Z}}(M, M) = 0$, there is no o_j-obstruction. To find the o_j-obstruction we start with a factorisation of the multiplication-by-f-map, given by $f \equiv x \cdot x \mod (2)$; $\overline{A} \subset A \sub \overline{A}$. Let $T^1 = \mathbb{Z}_2[u]$, where the image $\overline{u}u$ of u in m/n, where $n = n^2 + (2)$ T^1 corresponds to the \mathbb{F}_2-dual of $\xi = [-1] = [1] \in \text{Ext}^1_{\overline{A}}(M, M)$. Then the universal lifting M_1 of M to the relative Zariski tangent space $\text{Def}_{\mathcal{H}}^B(k[x])$ is given by the factorisation $A \otimes \mathbb{Z}_2 T^1 \xrightarrow{\xi \cdot \overline{u}} A \otimes \mathbb{Z}_2 T^1 \xrightarrow{\xi \cdot \overline{u}} A \otimes \mathbb{Z}_2 T^1$ of $f \equiv x^2 \mod (2, u^2)$, where $T^1 = T^1/n = \mathbb{Z}_2[u]/(2, u^2) = \mathbb{F}_2[u]/(u^2)$. The only obstruction appears when we try to lift this factorisation of f to $T^1 = T^1/n \cdot m = \mathbb{Z}_2[u]/(2, 2u, u^2)$ and it is represented by $(x-u)(x-u) - f = -(2+u^2)$ in $A \otimes \mathbb{Z}_2 T^1$). In particular the class $\xi \cup \xi = [-1] = [1] \in \text{coker} \partial_{\overline{A}} \cong \mathbb{F}_2$ is “carrying” the obstruction polynomial $2+u^2$. There are no more obstructions.

If instead $f = 4 + x^3$, one obtains the factorisation

$$A \otimes \mathbb{Z}_2 T^1 \xrightarrow{\xi \cdot \overline{u}} A \otimes \mathbb{Z}_2 T^1 \xrightarrow{\xi \cdot \overline{u}} A \otimes \mathbb{Z}_2 T^1$$

of $f \equiv x^3 \mod (2^2, 2u, u^3)$ which gives a defining system B for the J-Massey product $\langle \xi, \xi, \xi; B \rangle_J = [-1] \in \text{coker} \partial_{\overline{A}}$ and the obstruction is $(x-u)(x^2 + xu + u^2) - (4 + u^3) = -(4 + u^3)$ (or more precisely $[-1] \otimes (4+u^3)$). There are no more obstructions.

Example 7. Let C_4 be the cyclic group of order four and $\mathbb{Z}_2 = \hat{\mathbb{Z}}(2)$. Let x be a generator of C_4 such that the group algebra $B := \mathbb{Z}_2 C_4 \cong \mathbb{Z}_2[x]/J$, where $J = (f)$ and $f = x^4-1$. Then $\overline{B} = B/(2)$, let $M = \overline{B}/(y^2) = \mathbb{F}_2[y]/(y^2)$, where $y = x-1$. We give obstruction polynomials defining the hull H of $\text{Def}_{\mathcal{H}}^B : \text{Art}_{\mathcal{H}} \rightarrow \text{Sets}$ and indicate how to find them. Let $A := \mathbb{Z}_2[x]$; then $A = A/(2)$.

The 5-term exact sequence of the spectral sequence $\text{Ext}^2_{\overline{A}}(M, \text{Ext}^2_{\overline{A}}(B, M)) \Rightarrow \text{Ext}^2_{\overline{A}}(M, M)$ (see Lemma 2) is

$$0 \rightarrow M \xrightarrow{\xi} M \xrightarrow{\partial_{\overline{A}}=0} M \xrightarrow{\xi} M \rightarrow 0.$$

Since $\text{pdim}_{\overline{A}}(M) = 1$ there is no A-obstruction and o_A^4 is trivial. Let $T^2_2 = \mathbb{Z}_2[z_0, z_1]$, where \overline{z}_0 and \overline{z}_1, the images in the relative cotangent space, are \mathbb{F}_2-duals to the elements -1 and $-y$ of $\text{coker} \partial_{\overline{A}} \cong M$. Let $T^1 = \mathbb{Z}_2[a, b]$ where a and b likewise are \mathbb{F}_2-duals to the elements -1 and $-y$ in $\text{ker} \partial_{\overline{A}} \cong M$. Then the obstruction map $o_A^4 : T^2_2 \rightarrow T^1$ may be given as

$$o_A^4(z_0) = a^2 + ab + 4ab,$$

$$o_A^4(z_1) = 4 + 6b + b^3 + 4a + 2ab + 4b^2.$$

This is a regular sequence, hence $\dim_{\text{Koll}} H = 1$. The versal family is the cyclic module $A \otimes H/(y^2 - a - yb)$, where $A \otimes H = \text{lim} \{A \otimes H/ \text{im}(n \cdot m_H^i)\}$, $n = m_H^2 + (2)H$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
To find the obstruction one deforms the pair \((y^2, y^2)\) as a factorisation of \(f\); \(x^4 - 1 = y^2 y^2\). In particular; \(B \overset{y}{\rightarrow} B \overset{x}{\rightarrow} B \overset{y}{\rightarrow} B\) gives a \(B\)-free 2-presentation of \(M\). The universal lifting \(M_1\) of \(M\) to the relative Zariski tangent space \(\text{Def}^B_M(k[\varepsilon])\) is given by the factorisation \(x^4 - 1 = (y^2 - (a+by))\) \((y^2 + (a+by)) \mod n\). The obstructions are created as one lifts and expands the factorisation as to be valid over \(A \otimes H/\text{m}^i_H\) successively for all \(i\). Indeed we get \(x^4 - 1 = (y^2 - a - yb)\) \((y^2 + a + yb + 6 + b^2 + 4y + 4b)\) in \(A \otimes H\).

In the last example we shall see (even clearer) how the change of rings formalism is instrumental both in estimating and calculating the obstruction. The 5-term exact sequence and the \(A\)-free Koszul resolution immediately imply that we can have at maximum two obstruction polynomials even though \(\dim_k \text{Ext}^2_B(M, M) = 4\). Moreover we only have to lift a “generalised matrix factorisation” \(\text{see [S]}\), defined over the regular ring \(A\), to give defining systems for the Massey products which calculate the obstruction of \(\text{Def}^B_M\), and hence we avoid the relations in \(B\) in the calculus.

Example 8. Let \(A = k[x, y]\), \(f = x^{m+1} + y^{n+1}\), \(B = A/(f)\), \(M = B/(y, x^2)\) as a \(B\)-module and assume \(m \geq 3\), \(m \equiv 1 \mod 2\), and \(n \geq 1\) (the case \(m \equiv 0 \mod 2\) is similar). We give the obstruction polynomials of \(\text{Def}^B_M: \text{Art}_k \rightarrow \text{Sets}\) and indicate how to find them. The 5-term exact sequence is

\[
0 \rightarrow M \overset{\partial_2}{\rightarrow} M \overset{\partial_1}{\rightarrow} M \overset{(id, 0)}{\rightarrow} M \overset{(0, id)}{\rightarrow} M \rightarrow 0
\]

and in particular the Zariski tangent space of the hull \(H\) of \(\text{Def}^B_M\) is 4-dimensional as a \(k\)-vector space; \(\text{Ext}^2_B(M, M) \cong M \otimes^k k^4\). The Koszul complex \((K, d)\) of \((y, x^2)\) gives an \(A\)-free resolution of \(M\), the Koszul complex is functorial in the sequence \(i.e.\) in the first differential \(\partial\) that a perturbation of \((y, x^2)\) induce a perturbation \((K, d)\) of the complex, in particular \(d^2 = 0\), and hence there is no A-obstruction and the obstruction map \(\partial^4\) is trivial. The \(d_2\)-map \([3]\) is injective and the obstruction space \(\text{coker} \partial_J \cong M \cong k \otimes^k (k\text{-linearly})\), where \(J = (f)\). Let \(T_2 = k[[z_0, z_1]]\), where the images \(\overline{z}_0\) and \(\overline{z}_1\) in the cotangent space \(m/m^2\) are the \(k\)-dual elements to \(-1\) and \(-x\), which give a \(k\)-basis for \(\text{coker} \partial_J\). Let \(T_1 = k[[a, b, c, d]]\), where \(\overline{a}\) and \(\overline{b}\) in \(m/m^2\) are \(k\)-duals to \(-1\) and \(-x\) in \(M\) and likewise for \(\overline{c}\) and \(\overline{d}\). Let \(l = \frac{a - b}{d}\). Then the obstruction map \(\partial' : T_2 \rightarrow T_1\) may be given as

\[
\partial'(z_0) = \sum_{i=0}^{n} \sum_{j=0}^{\min(i, n-i)} \binom{n}{i+j} \binom{n-i-j}{i} a^{n-i-j} b^{i+j} c^{j+1} d^{i-j}
\]

\[
+ \sum_{i=0}^{l} \left[\sum_{j=0}^{\min(i, l-i)} \binom{i}{j} \binom{l}{i+j} \right] c^{i+1-i} d^{2i},
\]

\[
\partial'(z_1) = \sum_{i=0}^{n} \sum_{j=0}^{\min(i+1, n-i)} \binom{i+1}{j} \binom{n}{i+j} a^{n-i-j} b^{i+j} c^{j} d^{i+1-j}
\]

\[
+ \sum_{i=0}^{l} \left[\sum_{j=0}^{\min(i+1, l-i)} \binom{i+1}{j} \binom{l}{i+j} \right] c^{i-j} d^{2i+1}.
\]
The terms of lowest and highest degrees in the four sums are given by
\[o'(z_0) = a^n c + c^{l+1} + \ldots + b^n cd^n + cd^{2l}, \]
\[o'(z_1) = a^0 d + na^{n-1} bc + (l+1)c^d + \ldots + b^n d^{n+1} + d^{2l+1}. \]

At least in the case \(l = n \) we get a regular sequence. However, before calculating a single obstruction we have \(4 \geq \dim_{\text{Krull}} H \geq 2 \) while the standard estimate yields \(4 \geq \dim_{\text{Krull}} H \geq 0 \). If we localise \(B \) (and \(M \)) at the maximal ideal \(\mathfrak{m} = (x, y) \), then there is a natural isomorphism \(\text{Ext}_M^B \to \text{Def}^B_{\Omega_B(M)} \) given by mapping a deformation \(M_R \) to its \(B_R \)-syzygy module. The syzygy induces isomorphisms \(\text{Ext}_B^1(M, M) \cong \text{Ext}_B^1(\Omega_B(M), \Omega_B(M)) \) for \(i = 1, 2 \); see [8]. In [9] we more generally show that the hull of the deformation functor of a rank 1 maximal Cohen Macaulay module \(N \) on a hypersurface singularity \(\text{Spec} B \) in particular satisfies the sharpened estimate
\[\dim_k \text{Ext}_B^1 \geq \dim_{\text{Krull}} H \geq \dim_k \text{Ext}_B^1 - \dim_k \text{Ext}_B^2 + \dim_k H_2(S), \]

where \(\text{Ext}_B^1 = \text{Ext}_B^1(N, N) \) and \(S = \mathcal{S}(\varphi) \) is the “Scandinavian complex” of the (square) presenting matrix \(\varphi \) of \(N \). In our case \(H_2(S) \cong M \cong k^2 \) (k-linearly).

The versal family of \(\text{Def}^B_M \) is the cyclic module \(A \otimes H/(y - a - xb, x^2 - c - xd) \) where \(A \otimes H = \lim \{A \otimes H/\text{im}([H^2])\} \). To find the obstruction one deforms the “generalised matrix factorisation” (see [6 Def. 6.1.6]) \(((y, x^2), (y^n, x^{m-1} c)) \) of \(f = x^{m+1} + y^{n+1} \). The universal lifting \(M_1 \) of \(M \) to the Zariski tangent space \(\text{Spec} B \) is given by
\[x^{m+1} + y^{n+1} = (y - a - xb, x^2 - c - xd) \cdot \left(y^n + y^{n-1}(a + xb) \right) \mod m^2_H. \]

To find the obstruction one has to lift and expand this factorisation as to be valid mod \(m^2_H \) successively for all \(n \geq 2 \).

ACKNOWLEDGEMENT

The author is indebted to Professor O. A. Laudal for sharing essential insight and for valuable comments on the manuscript.

REFERENCES

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway

Email address: ile@math.uio.no