Expansiveness of algebraic actions on connected groups

Author:
Siddhartha Bhattacharya

Journal:
Trans. Amer. Math. Soc. **356** (2004), 4687-4700

MSC (2000):
Primary 37B05; Secondary 54H20

Published electronically:
June 22, 2004

MathSciNet review:
2084394

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study endomorphism actions of a discrete semigroup on a connected group . We give a necessary and sufficient condition for expansiveness of such actions provided is either a Lie group or a solenoid.

**1.**Nobuo Aoki and Masahito Dateyama,*The relationship between algebraic numbers and expansiveness of automorphisms on compact abelian groups*, Fund. Math.**117**(1983), no. 1, 21–35. MR**712210****2.**Siddhartha Bhattacharya,*Orbit equivalence and topological conjugacy of affine actions on compact abelian groups*, Monatsh. Math.**129**(2000), no. 2, 89–96. MR**1742910**, 10.1007/s006050050008**3.**Mike Boyle and Douglas Lind,*Expansive subdynamics*, Trans. Amer. Math. Soc.**349**(1997), no. 1, 55–102. MR**1355295**, 10.1090/S0002-9947-97-01634-6**4.**Murray Eisenberg,*Expansive automorphisms of finite-dimensional vector spaces*, Fund. Math.**59**(1966), 307–312. MR**0203427****5.**Nathan Jacobson,*Lectures in abstract algebra. Vol. II. Linear algebra*, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR**0053905****6.**Anatole B. Katok and Klaus Schmidt,*The cohomology of expansive 𝑍^{𝑑}-actions by automorphisms of compact, abelian groups*, Pacific J. Math.**170**(1995), no. 1, 105–142. MR**1359974****7.**Bruce Kitchens and Klaus Schmidt,*Automorphisms of compact groups*, Ergodic Theory Dynam. Systems**9**(1989), no. 4, 691–735. MR**1036904**, 10.1017/S0143385700005290**8.**Anthony W. Knapp,*Lie groups beyond an introduction*, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1399083****9.**Ping-fun Lam,*On expansive transformation groups*, Trans. Amer. Math. Soc.**150**(1970), 131–138. MR**0263056**, 10.1090/S0002-9947-1970-0263056-0**10.**Wayne Lawton,*The structure of compact connected groups which admit an expansive automorphism*, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Springer, Berlin, 1973, pp. 182–196. Lecture Notes in Math., Vol. 318. MR**0391051****11.**Douglas Lind and Klaus Schmidt,*Homoclinic points of algebraic 𝑍^{𝑑}-actions*, J. Amer. Math. Soc.**12**(1999), no. 4, 953–980. MR**1678035**, 10.1090/S0894-0347-99-00306-9**12.**L. S. Pontryagin,*Topological groups*, Translated from the second Russian edition by Arlen Brown, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. MR**0201557****13.**Klaus Schmidt,*Automorphisms of compact abelian groups and affine varieties*, Proc. London Math. Soc. (3)**61**(1990), no. 3, 480–496. MR**1069512**, 10.1112/plms/s3-61.3.480**14.**Klaus Schmidt,*Dynamical systems of algebraic origin*, Progress in Mathematics, vol. 128, Birkhäuser Verlag, Basel, 1995. MR**1345152**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37B05,
54H20

Retrieve articles in all journals with MSC (2000): 37B05, 54H20

Additional Information

**Siddhartha Bhattacharya**

Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Mumbai 400005, India

Email:
siddhart@math.tifr.res.in

DOI:
http://dx.doi.org/10.1090/S0002-9947-04-03590-1

Keywords:
Expansive action,
Lie group,
solenoid

Received by editor(s):
September 6, 2000

Received by editor(s) in revised form:
April 19, 2001

Published electronically:
June 22, 2004

Article copyright:
© Copyright 2004
American Mathematical Society