Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Complete second order linear differential operator equations in Hilbert space and applications in hydrodynamics


Authors: N. D. Kopachevsky, R. Mennicken, Ju. S. Pashkova and C. Tretter
Journal: Trans. Amer. Math. Soc. 356 (2004), 4737-4766
MSC (2000): Primary 35A05; Secondary 35Q30, 47D06, 47F05, 47B44, 47B50
DOI: https://doi.org/10.1090/S0002-9947-04-03693-1
Published electronically: June 29, 2004
MathSciNet review: 2084396
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Cauchy problem for a complete second order linear differential operator equation in a Hilbert space ${\mathcal H}$ of the form

\begin{displaymath}\frac{d^2u}{dt^2}+(F+{\rm i}K)\frac{du}{dt}+Bu=f,\quad u(0)=u^0, \quad u'(0)=u^1. \end{displaymath}

Problems of this kind arise, e.g., in hydrodynamics where the coefficients $F$, $K$, and $B$ are unbounded selfadjoint operators. It is assumed that $F$ is the dominating operator in the Cauchy problem above, i.e.,

\begin{displaymath}{\mathcal D}(F)\subset{\mathcal D}(B),\quad {\mathcal D}(F)\subset {\mathcal D}(K). \end{displaymath}

We also suppose that $F$ and $B$ are bounded from below, but the operator coefficients are not assumed to commute. The main results concern the existence of strong solutions to the stated Cauchy problem and applications of these results to the Cauchy problem associated with small motions of some hydrodynamical systems.


References [Enhancements On Off] (What's this?)

  • [ALMS] F.V. Atkinson, H. Langer, R. Mennicken, A.A. Shkalikov, The essential spectrum of some matrix operators, Math. Nachr. 67 (1994), 5-20. MR 1285306 (95f:47007)
  • [AdL] V.M. Adamyan, H. Langer, Spectral properties of a class of rational operator valued functions, J. Operator Theory 33 (1995), 259-277. MR 1354980 (96i:47023)
  • [AdLMS] V.M. Adamyan, H. Langer, R. Mennicken, J. Saurer, Spectral components of selfadjoint block operator matrices with unbounded entries, Math. Nachr. 178 (1996), 43-80. MR 1380703 (97i:47036)
  • [AKL] N.K. Askerov, S.G. Krein, G.I. Laptev, Zadachi o kolebanijah viazkoy zhidkosti i sviazannije s ney operatornije uravnenija, Funktsional'niy analiz i ego prilozhenija, 2:2 (1968), 21-32 (in Russian). MR 0232233 (38:559)
  • [AHKM] T.Ya.Azizov, V.Hardt, N.D.Kopachevsky, R.Mennicken, To the problem on small motions and normal oscillations of a viscous fluid in a partially filled container, Math. Nachr. 248/249 (2003), 3-39. MR 1950713 (2003m:76046)
  • [AKO] T.Ya. Azizov, N.D. Kopachevsky, L.D. Orlova, Evoljutsionnije i speltral'nije zadachi, porozhdionnije problemoy malih dvizheniy viazkouprugoy zhidkosti, Trudy Sankt Peterburgskogo matematicheskogo obschestva. 6 (1998), 5-33 (in Russian).
  • [BS] M.Sh.Birman, M.Z.Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Engl. transl.: Mathematics ad its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. MR 1192782 (93g:47001)
  • [EE] D.E.Edmunds, W.D.Evans, Spectral theory and differential operators, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1987. MR 0929030 (89b:47001)
  • [En1] K.-J.Engel, Operator matrices and systems of evolution equations, RIMS Kokyuroku 966 (1996), 61-80. MR 1484209 (99a:34161)
  • [En2] K.-J.Engel, Matrix representation of linear operators on product spaces, in: Aiena, P. (ed.) et al., International workshop on Operator theory, Cefalu, Italy, July 14-19, 1997. Palermo: Circolo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 56 (1998), 219-224. MR 1710840 (2000f:47004)
  • [F] H.O. Fattorini: Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies 108, Notas de Matemática [Mathematical Notes] 99, North-Holland Publishing Co., Amsterdam, 1985. MR 0797071 (87b:34001)
  • [G] E. Gagliardo, Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili, Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305 (in Italian). MR 21:1525
  • [Ga] A.Garadzhaev, K zadache o normal'nih kolebanijah tiazhioloy viazkoy zhidkosti v sosude, Sibirskiy matematicheskiy zhurnal 25:2 (1984), 213-216 (in Russian). MR 0741022 (86c:76025)
  • [Gob] J.Gobert, Une inégalité fondamentale de la théorie de l'élasticité, Bull. Soc. Roy. Sci. Liège 31 (1962), 182-191 (in French). MR 0133684 (24:A3510)
  • [GGK] I.C.Gohberg, S.Goldberg, M.A.Kaashoek, Classes of Linear Operators, Vol. I, Operator Theory: Adv. Appl. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394 (93d:47002)
  • [Go] D. Goldstein, Polugruppi lineynih operatorov i ih prilozhenija, Vischa shkola, Kiev, 1989 (in Russian). MR 1201586 (93i:47054)
  • [GG] V.I. Gorbachuk, M.L. Gorbachuk, Granichnye zadachi dlya differentsial'no-operator nykh uravnenii, Naukova Dumka, Kiev, 1984 (in Russian), Engl Transl. Boundary Value Problems for Operator Differential Equations, Kluwer Academic Publishers Group, Dordrecht, 1991. MR 1190695 (93e:00017)
  • [HMN] V.Hardt, R.Mennicken, S.Naboko, Systems of singular differential operators of mixed order and applications to 1-dimensional MHD problems, Math. Nachr. 205 (1999), 19-68. MR 1709162 (2000f:47073)
  • [HP] E.Hille, R.S.Phillips, Functional Analysis and Semi-Groups, American Mathematical Society Colloquium Publications 31, American Mathematical Society, Providence, R.I., 1957. MR 0089373 (19,664d)
  • [IMF] V.K.Ivanov, I.V.Mel'nikova, A.I.Filinkov, Operator-Differential Equations and Ill-Posed Problems, Moscow, Nauka, 1995 (in Russian). MR 1415388 (97j:47092)
  • [Ka] T.Kato, Perturbation theory for linear operators, 2nd edition, Springer Verlag, Berlin, Heidelberg, New York, 1995. MR 1335452 (96a:47025)
  • [Kon] A.Yu. Konstantinov, Spectral theory of some matrix differential operators of mixed order. Ukrain. Mat. Zh. 50:8 (1998), 1064-1072 (in Ukrainian), Engl. Transl. Ukrainian Math. J. 50:8 (1998), 1212-1223 (1999). MR 1706515 (2001a:47047)
  • [Ko] N.D. Kopachevsky, Normal'nije kolebanija sistemy tiazhiolih viazkih vraschajuschihsia zhidkostey, Doklady AN Ukrainskoy SSR, serija A, 7 (1978), 586-590 (in Ukrainian).
  • [KKN] N.D. Kopachevsky, S.G. Krein, NgoZuyCan, Operatornije metody v lineynoy gidrodinamike: Evoljutsionnije i spektral'nije zadachi [Operator Methods in Linear Hydrodynamics], Nauka, Moscow, 1989 (in Russian). MR 1037258 (91h:76001)
  • [KKMRSZ] A.I.Koshelev, M.A.Krasnosel'sky, S.G.Mihlin, L.S.Rakovschik, V.Ja.Stetsenko, P.P. Zabrejko, Integral'nije uravnenija, Nauka, Moscow, 1968 (in Russian).
  • [KZPP] M.A. Krasnosel'sky, P.P. Zabrejko, E.I. Pustyl'nik, P.E. Sobolevsky, Integral'nije operatori v prostranstvah summiruemih funktsiy, Nauka, Moscow, 1966 (in Russian). Engl. Transl.: Integral Operators in Spaces of Summable Functions, Monographs and Textbooks on Mechanics of Solids and Fluids, Mechanics: Analysis, Noordhoff International Publishing, Leiden, 1976.
  • [K1] S.G. Krein, O kolebanijah viazkoy zhidkosti v sosude, Doklady AN SSSR 159:2 (1964), 262-265 (in Russian). MR 0182238 (31:6461)
  • [K2] S.G. Krein, Linejnije differentsial'nije uravnenija v banahovom prostranstve, Nauka, Moscow, 1967 (in Russian), Engl. Transl.: Linear Differential Equations in Banach Space, Transl. Math. Monographs 29, American Mathematical Society, Providence, R.I., 1971. MR 0247239 (40:508)
  • [KH] S.G. Krein, M.I. Hazan, Differentsial'nije uravnenija v banahovom prostranstve, V sbornike ``Itogi nauki i tehniki", Matematicheskij analiz 21, 130-264 (in Russian).
  • [KL] S.G. Krein, G.I. Laptev, K zadache o dvizhenii viazkoy zhidkosti v otkritom sosyde, Functsional'niy analiz i ego prilozhenija 2:2 (1968), 40-50 (in Russian). MR 0248462 (40:1714)
  • [La] O.A.Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Nauka, Moscow, 1970 (in Russian), Engl. Transl.: Mathematics and its Applications 2, Gordon and Breach, Science Publishers, New York, London, Paris, 1969. MR 0254401 (40:7610)
  • [LT1] H.Langer, C.Tretter, Spectral decomposition of some nonselfadjoint block operator matrices, J. Operator Theory 39:2 (1998), 339-359. MR 1620503 (99d:47004)
  • [LT2] H.Langer, C.Tretter, Diagonalization of certain block operator matrices and applications to Dirac operators, Operator Theory: Adv. Appl. 122 (2001), 331-358. MR 1846064 (2002f:47006)
  • [MM] R.Mennicken, A.Motovilov, Operator interpretation of resonances arising in spectral problems for $2\times 2$ operator matrices, Math. Nachr. 201 (1999), 117-181. MR 1680916 (2000f:47040)
  • [MNT] R.Mennicken, S.Naboko, C.Tretter, Essential spectrum of a system of singular differential operators and the asymptotic Hain-Lüst operator, Proc. Amer. Math. Soc. 130 (2002), 1699-1710. MR 1887017 (2002k:47092)
  • [MS] R.Mennicken, A.A. Shkalikov, Spectral decomposition of symmetric operator matrices, Math. Nachr. 179 (1996), 259-273. MR 1389460 (97d:47012)
  • [M] G.Metivier, Valeurs propres d'opérateurs définis par la restriction de systèmes variationnels à des sous-espaces, J. Math. Pures Appl. (9) 57:2 (1978), 33-156 (in French). MR 0505900 (81c:35100)
  • [M] A.Motovilov, Removal of the resolvent-like energy dependence from interactions and invariant subspaces of a total Hamiltonian, J. Math. Phys. 36:12 (1995), 6647-6664. MR 1359649 (96m:81249)
  • [N1] R.Nagel, Towards a ``matrix theory" for unbounded operator matrices, Math. Z. 201:1 (1989), 57-68. MR 0990188 (90c:47004)
  • [N2] R.Nagel, Operator matrices and reaction-diffusion systems, Rend. Sem. Mat. Fis. Milano 59 (1989), 185-196. MR 1159696 (93c:47085)
  • [N3] R.Nagel, The spectrum of unbounded operator matrices with nondiagonal domain, J. Funct. Anal. 89:2 (1990), 291-302. MR 1042212 (91b:47005)
  • [S] A.A. Shkalikov, On the essential spectrum of matrix operators, Mat. Zametki 58:6 (1995), 945-949 (in Russian). MR 1382107 (97e:47004)
  • [SV] I.L.Vulis, M.Z.Solomjak, Spectral asymptotic analysis of the degenerate Steklov problem, Vestnik Leningrad. Univ. No. 19 Mat. Meh. Astronom Vyp. 4 (1973), 148-150, 156 (in Russian). MR 0330795 (48:9132)
  • [S1] M.Sowa, Cosine operator functions, Rozprawy Math. 49 (1966), 1-47. MR 0193525 (33:1745)
  • [S2] M.Sowa, Semigroups and cosine functions of normal operators in Hilbert spaces, Casopis Pest. Math. 93 (1968), 437-458. MR 0250121 (40:3361)
  • [T] R.Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam, 1979. MR 0603444 (82b:35133)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35A05, 35Q30, 47D06, 47F05, 47B44, 47B50

Retrieve articles in all journals with MSC (2000): 35A05, 35Q30, 47D06, 47F05, 47B44, 47B50


Additional Information

N. D. Kopachevsky
Affiliation: Taurida National V. Vernadsky University, Ul. Yaltinskaya, 4, 95007 Simferopol, Crimea, Ukraine
Email: kopachevsky@tnu.crimea.ua

R. Mennicken
Affiliation: NWF I – Mathematik, University of Regensburg, 93040 Regensburg, Germany
Email: reinhard.mennicken@mathematik.uni-regensburg.de

Ju. S. Pashkova
Affiliation: Taurida National V. Vernadsky University, Ul. Yaltinskaya, 4, 95007 Simferopol, Crimea, Ukraine
Email: kromsh@crimea.com

C. Tretter
Affiliation: FB 3 – Mathematik, University of Bremen, Bibliothekstr. 1, 28359 Bremen, Germany
Email: ctretter@math.uni-bremen.de

DOI: https://doi.org/10.1090/S0002-9947-04-03693-1
Keywords: Block operator matrix, differential equation in Hilbert space, evolution problem, Navier--Stokes equations
Received by editor(s): January 29, 2002
Published electronically: June 29, 2004
Additional Notes: N. D. Kopachevsky, R. Mennicken, and C. Tretter gratefully acknowledge the support of the German Research Foundation, DFG, Grants No. 436UKR113/38/0 and No. TR368/4-1, and of the British Engineering and Physical Sciences Research Council, EPSRC, Grant No. GR/R40753.
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society