Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Second order parabolic equations in Banach spaces with dynamic boundary conditions


Authors: Ti-Jun Xiao and Jin Liang
Journal: Trans. Amer. Math. Soc. 356 (2004), 4787-4809
MSC (2000): Primary 34G10, 47D06, 35G10
DOI: https://doi.org/10.1090/S0002-9947-04-03704-3
Published electronically: June 25, 2004
MathSciNet review: 2084398
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we exhibit a unified treatment of the mixed initial boundary value problem for second order (in time) parabolic linear differential equations in Banach spaces, whose boundary conditions are of a dynamical nature. Results regarding existence, uniqueness, continuous dependence (on initial data) and regularity of classical and strict solutions are established. Moreover, several examples are given as samples for possible applications.


References [Enhancements On Off] (What's this?)

  • 1. K. T. Andrews, K. L. Kuttler, and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl. 197 (1996), 781-795. MR 1373080 (96m:34116)
  • 2. H. T. Banks and D. J. Inman, On damping mechanisms in beams, ASME Trans. 58 (1991), 716-723.
  • 3. H. Brezis and L. E. Fraenkel, A function with prescribed initial derivatives in different Banach spaces, J. Funct. Anal. 29 (1978), 328-335. MR 0512249 (80k:46047)
  • 4. T. P. Chang, Forced vibration of a mass-loaded beam with a heavy tip body, J. Sound Vibration 164 (1993), 471-484.
  • 5. R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Academic Press, New York, 1976. MR 0460842 (57:834)
  • 6. V. Casarino, K. -J. Engel, R. Nagel and G. Nickel, A semigroup approach to boundary feedback systems, Integral Equations Operator Theory 47 (2003), 289-306.MR 2012840
  • 7. K. -J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, GTM 194, Springer, Berlin, New York, 2000. MR 1721989 (2000i:47075)
  • 8. J. Escher, Quasilinear parabolic systems with dynamical boundary conditions, Comm. Part. Diff. Equations 18 (1993), 1309-1364. MR 1233197 (94g:35112)
  • 9. H. O. Fattorini, The Cauchy Problem, Addison-Wesley, Reading, Mass. 1983. MR 0692768 (84g:34003)
  • 10. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, Elsevier Science Publishers B. V., Amsterdam, 1985. MR MR0797071 (87b:34001)
  • 11. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, $C\sb 0$-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc. 128 (2000), 1981-1989. MR 1695147 (2000m:47054)
  • 12. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generalized Wentzell boundary conditions and analytic semigroups in $C[0,1]$, Semigroups of operators: theory and applications (Newport Beach, CA, 1998), 125-131, Progr. Nonlinear Diff. Equations Appl., 42, Birkhäuser, Basel, 2000. MR 1788874 (2001h:47061)
  • 13. A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary condition, J. Evolution Eqs. 2 (2002), 1-19. MR 1890879 (2003b:35089)
  • 14. A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Diff. Integral Equations, 4 (1991), 1005-1022. MR 1123349 (92m:47078)
  • 15. M. Grobbelaar-van Dalsen and N. Sauer, Dynamic boundary conditions for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), 1-11. MR 1025450 (91a:35136)
  • 16. T. Hintermann, Evolution equations with dynamic boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), 43-60. MR 1025453 (91a:35094)
  • 17. J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Diff. Equations 50 (1983), 163-182. MR 0719445 (85f:35025)
  • 18. J. L. Lions, Équations différentielles opérationelles et problèmes aux limites, Springer-Verlag, Berlin, 1961. MR 0153974 (27:3935)
  • 19. E. Obrecht, The Cauchy problem for time-dependent abstract parabolic equations of higher order, J. Math. Anal. Appl. 125 (1987), 508-530. MR 896179 (88j:34125)
  • 20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. MR 0710486 (85g:47061)
  • 21. Y. Sakawa and Z. H. Luo, Modeling and control of coupled bending and torsional vibrations of flexible beams, IEEE Trans. Automat. Control 34 (1989), 970-977. MR 1007424 (90g:73087)
  • 22. R. E. Showalter, Degenerate evolution equations and applications, Indiana Univ. Math. J. 23 (1974), 655-677. MR 333835 (48:12157)
  • 23. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. MR 0500580 (80i:46032a)
  • 24. T. J. Xiao and J. Liang, The Cauchy problem for higher order abstract differential equations, Lect. Notes in Math. 1701, Springer, Berlin, New York, 1998. MR 1725643 (2001a:34099)
  • 25. T. J. Xiao and J. Liang, Higher order abstract Cauchy problems and their existence, uniqueness families, J. London Math. Soc. 67 (2003), 149-164. MR 1942417 (2003i:34141)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34G10, 47D06, 35G10

Retrieve articles in all journals with MSC (2000): 34G10, 47D06, 35G10


Additional Information

Ti-Jun Xiao
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China – and – Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
Email: xiaotj@ustc.edu.cn, tixi@fa.uni-tuebingen.de

Jin Liang
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China – and – Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany
Email: jliang@ustc.edu.cn, jili@fa.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0002-9947-04-03704-3
Keywords: Differential equations in Banach spaces, second order (in time), parabolic type, dynamic boundary conditions, strict and classical solutions
Received by editor(s): June 24, 2002
Published electronically: June 25, 2004
Additional Notes: The first author acknowledges support from the Alexander-von-Humboldt Foundation and from CAS and NSFC. The second author acknowledges support from the Max-Planck Society and from CAS and EMC
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society