Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra


Author: Ethan S. Devinatz
Translated by:
Journal: Trans. Amer. Math. Soc. 357 (2005), 129-150
MSC (2000): Primary 55N20; Secondary 55P43, 55T15
Published electronically: January 23, 2004
MathSciNet review: 2098089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ and $K$ be closed subgroups of the extended Morava stabilizer group $G_n$ and suppose that $H$ is normal in $K$. We construct a strongly convergent spectral sequence

\begin{displaymath}H^\ast_c(K/H, (E^{hH}_n)^\ast X) \Rightarrow (E^{hK}_n)^\ast X, \end{displaymath}

where $E^{hH}_n$ and $E^{hK}_n$ are the continuous homotopy fixed point spectra of Devinatz and Hopkins. This spectral sequence turns out to be an Adams spectral sequence in the category of $K(n)_\ast$-local $E^{hK}_n$-modules.


References [Enhancements On Off] (What's this?)

  • [1] A. Baker and A. Lazerev, On the Adams spectral sequence for $R$-modules, Algebr. Geom. Topol. 1 (2001), 173-199 (electronic). MR 2002a:55011
  • [2] J. M. Boardman, Conditionally convergent spectral sequences, Homotopy Invariant Algebraic Structures (J. P. Meyer, J. Morava, W. S. Wilson, eds.), Contemp. Math. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 49-84. MR 2000m:55024
  • [3] A. K. Bousfield, The localization of spectra with respect to homology (correction in Comment. Math. Helv. 58 (1983), 599-600), Topology 18 (1978), 257-281. MR 80m:55006
  • [4] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, 2nd corrected edition, Lecture Notes in Mathematics 304, Springer-Verlag, New York, 1987. MR 51:1825
  • [5] E. S. Devinatz, Morava's change of rings theorem, The Cech Centennial (M. Cenkl and H. Miller, eds.), Contemp. Math. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 93-118. MR 96m:55007
  • [6] E. S. Devinatz and M. J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), 1-47.
  • [7] J. P. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic Pro-$p$ Groups, 2nd edition, Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge 1999. MR 2000m:20039
  • [8] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, Modules, and Algebras in Stable Homotopy Theory, Amer. Math. Soc. Surveys and Monographs 47, Amer. Math. Soc., Providence, RI, 1997. MR 97h:55006
  • [9] P. G. Goerss and M. J. Hopkins, Resolutions in model categories, manuscript, 1997.
  • [10] -, Simplicial structured ring spectra, manuscript, 1998.
  • [11] -, André-Quillen (co-)homology for simplicial algebras over simplicial operads, Une Dégustation Topologique [Topological Morsels]: Homotopy Theory in the Swiss Alps (D. Arlettaz and K. Hess, eds.), Contemp. Math. 265, Amer. Math. Soc., Providence, RI, 2000, pp. 41-85. MR 2001m:18012
  • [12] -, Realizing commutative ring spectra as $E_\infty$ring spectra, manuscript, 2000.
  • [13] M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory II, Ann. of Math. (2) 148 (1998), 1-49. MR 99h:55009
  • [14] D. Husemoller and J. C. Moore, Differential graded homological algebra in several variables, Symp. Math. IV, Inst. Naz. di Alta Mat., Academic Press, New York, 1970, pp. 397-429. MR 46:9143
  • [15] H. R. Miller, On relations between Adams spectral sequences with an application to the stable homotopy of a Moore space, J. of Pure and Applied Alg. 20 (1981), 287-312. MR 82f:55029
  • [16] C. Rezk, Notes on the Hopkins-Miller theorem, Homotopy Theory via Algebraic Geometry and Group Representations (M. Mahowald and S. Priddy, eds.), Contemp. Math. 220, Amer. Math. Soc., Providence, RI, 1998, pp. 313-366. MR 2000i:55023
  • [17] J. P. Serre, Galois Cohomology, Springer-Verlag, New York, 1997. MR 98g:12007
  • [18] S. S. Shatz, Profinite Groups, Arithmetic, and Geometry, Ann. of Math. Stud. 67, Princeton University Press, Princeton, 1972. MR 50:279
  • [19] P. Symonds and T. Weigel, Cohomology of $p$-adic analytic groups, New Horizons in Pro-$p$ Groups, Progr. Math. 184, Birkhäuser Boston, Boston, 2000, pp. 349-410. MR 2001k:22025

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55N20, 55P43, 55T15

Retrieve articles in all journals with MSC (2000): 55N20, 55P43, 55T15


Additional Information

Ethan S. Devinatz
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: devinatz@math.washington.edu

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03394-X
PII: S 0002-9947(04)03394-X
Keywords: Adams spectral sequence, continuous homotopy fixed point spectra, Morava stabilizer group
Received by editor(s): September 13, 2002
Received by editor(s) in revised form: May 21, 2003
Published electronically: January 23, 2004
Additional Notes: The author was partially supported by a grant from the National Science Foundation.
Article copyright: © Copyright 2004 American Mathematical Society